Li X, Lovell JF, Yoon J, Chen X. Medical growth and potential of photothermal and photodynamic therapies for most cancers. Nat Rev Clin Oncol. 2020;17(11):657–74.
Liu S, Pan X, Liu H. Two-dimensional nanomaterials for photothermal remedy. Angew Chem. 2020;132(15):5943–53.
Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS. Natural molecule-based photothermal brokers: an increasing photothermal remedy universe. Chem Soc Rev. 2018;47(7):2280–97.
Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal remedy and photoacoustic imaging through nanotheranostics in combating most cancers. Chem Soc Rev. 2019;48(7):2053–108.
Huang X, El-Sayed IH, Qian W, El-Sayed MA. Most cancers cell imaging and photothermal remedy within the near-infrared area through the use of gold nanorods. J Am Chem Soc. 2006;128(6):2115–20.
Melamed JR, Edelstein RS, Day ES. Elucidating the basic mechanisms of cell demise triggered by photothermal remedy. ACS Nano. 2015;9(1):6–11.
Pérez-Hernández M, Del Pino P, Mitchell SG, Moros M, Stepien G, Pelaz B, Parak WJ, Gálvez EM, Pardo J, de la Fuente JM. Dissecting the molecular mechanism of apoptosis throughout photothermal remedy utilizing gold nanoprisms. ACS Nano. 2015;9(1):52–61.
Li J, Zhang W, Ji W, Wang J, Wang N, Wu W, Wu Q, Hou X, Hu W, Li L. Close to infrared photothermal conversion supplies: mechanism, preparation and photothermal most cancers remedy functions. J Mater Chem B. 2021. https://doi.org/10.1039/D1TB01310F.
Lan M, Zhao S, Zhang Z, Yan L, Guo L, Niu G, Zhang J, Zhao J, Zhang H, Wang P. Two-photon-excited near-infrared emissive carbon dots as multifunctional brokers for fluorescence imaging and photothermal remedy. Nano Res. 2017;10(9):3113–23.
Zhou F, Da X, Ou Z, Wu B, Resasco DE, Chen WR. Most cancers photothermal remedy within the near-infrared area through the use of single-walled carbon nanotubes. J Biomed Choose. 2009;14(2):021009.
Kang B, Mackey MA, El-Sayed MA. Nuclear concentrating on of gold nanoparticles in most cancers cells induces DNA injury, inflicting cytokinesis arrest and apoptosis. J Am Chem Soc. 2010;132(5):1517–9.
Kim D, Jeong YY, Jon S. A drug-loaded aptamer? gold nanoparticle bioconjugate for mixed CT imaging and remedy of prostate most cancers. ACS Nano. 2010;4(7):3689–96.
Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal remedy (PPTT) utilizing gold nanoparticles. Lasers Med Sci. 2008;23(3):217–28.
Boca-Farcau S, Potara M, Simon T, Juhem A, Baldeck P, Astilean S. Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and focused photothermal therapy on human ovarian most cancers cells. Mol Pharm. 2014;11(2):391–9.
Wang Z, Chang Z, Lu M, Shao D, Yue J, Yang D, Li M, Dong W-F. Janus silver/silica nanoplatforms for light-activated liver most cancers chemo/photothermal remedy. ACS Appl Mater Interfaces. 2017;9(36):30306–17.
Bian Ok, Zhang X, Liu Ok, Yin T, Liu H, Niu Ok, Cao W, Gao D. Peptide-directed hierarchical mineralized silver nanocages for anti-tumor photothermal remedy. ACS Maintain Chem Eng. 2018;6(6):7574–88.
Tian Q, Hu J, Zhu Y, Zou R, Chen Z, Yang S, Li R, Su Q, Han Y, Liu X. Sub-10 nm Fe3O4@ Cu2–x S core–shell nanoparticles for dual-modal imaging and photothermal remedy. J Am Chem Soc. 2013;135(23):8571–7.
Estelrich J, Busquets MA. Iron oxide nanoparticles in photothermal remedy. Molecules. 2018;23(7):1567.
Lambert TN, Andrews NL, Gerung H, Boyle TJ, Oliver JM, Wilson BS, Han SM. Water-soluble germanium (0) nanocrystals: cell recognition and near-infrared photothermal conversion properties. Small. 2007;3(4):691–9.
Solar W, Zhong G, Kübel C, Jelle AA, Qian C, Wang L, Ebrahimi M, Reyes LM, Helmy AS, Ozin GA. Measurement-tunable photothermal germanium nanocrystals. Angew Chem Int Ed. 2017;56(22):6329–34.
Rastinehad AR, Anastos H, Wajswol E, Winoker JS, Sfakianos JP, Doppalapudi SK, Carrick MR, Knauer CJ, Taouli B, Lewis SC. Gold nanoshell-localized photothermal ablation of prostate tumors in a medical pilot gadget examine. Proc Natl Acad Sci. 2019;116(37):18590–6.
Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: value versus advantage of including concentrating on and imaging capabilities. Science. 2012;338(6109):903–10.
Hoffman HA, Chakrabarti L, Dumont MF, Sandler AD, Fernandes R. Prussian blue nanoparticles for laser-induced photothermal remedy of tumors. RSC Adv. 2014;4(56):29729–34.
Fu G, Liu W, Feng S, Yue X. Prussian blue nanoparticles function as a brand new technology of photothermal ablation brokers for most cancers remedy. Chem Commun. 2012;48(94):11567–9.
Cheng L, Gong H, Zhu W, Liu J, Wang X, Liu G, Liu Z. PEGylated prussian blue nanocubes as a theranostic agent for simultaneous most cancers imaging and photothermal remedy. Biomaterials. 2014;35(37):9844–52.
Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, Li C, Dai Z. Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of most cancers. Biomaterials. 2014;35(22):5814–21.
Wang Y-N, Zhang W-S, Liu X-P, Wei Y-Y, Xu Z-R. A nanohybrid of Prussian blue supported by boracic acid-modified g-C3N4 for Raman recognition of cell floor sialic acid and photothermal/photodynamic remedy. Colloids Surf, B. 2022;215:112490.
Lengthy J, Guari Y, Guérin C, Larionova J. Prussian blue sort nanoparticles for biomedical functions. Dalton Trans. 2016;45(44):17581–7.
Liu Y, Guo Q, Zhu X, Feng W, Wang L, Ma L, Zhang G, Zhou J, Li F. Optimization of prussian blue coated NaDyF4: x% Lu nanocomposites for multifunctional imaging-guided photothermal remedy. Adv Func Mater. 2016;26(28):5120–30.
Patra CR. Prussian blue nanoparticles and their analogues for software to most cancers theranostics. Future Med. 2016;11:569–72.
Fu J, Wu B, Wei M, Huang Y, Zhou Y, Zhang Q, Du L. Prussian blue nanosphere-embedded in situ hydrogel for photothermal remedy by peritumoral administration. Acta Pharmaceutica Sinica B. 2019;9(3):604–14.
Chen Y, Wu L, Wang Q, Wu M, Xu B, Liu X, Liu J. Toxicological analysis of prussian blue nanoparticles after quick publicity of mice. Hum Exp Toxicol. 2016;35(10):1123–32.
Hu W, Chen S, Liu L, Ding B, Wang H. Formaldehyde sensors primarily based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sens Actuators, B Chem. 2011;157(2):554–9.
Pourreza N, Golmohammadi H, Naghdi T, Yousefi H. Inexperienced in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Biosens Bioelectron. 2015;74:353–9.
Torgbo S, Sukyai P. Bacterial cellulose-based scaffold supplies for bone tissue engineering. Appl Mater Right this moment. 2018;11:34–49.
Almeida I, Pereira T, Silva N, Gomes F, Silvestre A, Freire C, Lobo JS, Costa P. Bacterial cellulose membranes as drug supply techniques: an in vivo pores and skin compatibility examine. Eur J Pharm Biopharm. 2014;86(3):332–6.
Amin MCIM, Ahmad N, Halib N, Ahmad I. Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug supply. Carbohyd Polym. 2012;88(2):465–73.
Trovatti E, Freire CS, Pinto PC, Almeida IF, Costa P, Silvestre AJ, Neto CP, Rosado C. Bacterial cellulose membranes utilized in topical and transdermal supply of lidocaine hydrochloride and ibuprofen: in vitro diffusion research. Int J Pharm. 2012;435(1):83–7.
Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohyd Polym. 2008;72(1):43–51.
Wu J, Zheng Y, Tune W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohyd Polym. 2014;102:762–71.
Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-H. Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing functions. Carbohyd Polym. 2013;94(1):603–11.
Qiu Y, Qiu L, Cui J, Wei Q. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound therapeutic. Mater Sci Eng, C. 2016;59:303–9.
Markstedt Ok, Mantas A, Tournier I, Martínez Ávila H, Hagg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering functions. Biomacromol. 2015;16(5):1489–96.
Africa TK. The manufacturing of nata from coconut water. Unitas. 1949;22:60–100.
Chiaoprakobkij N, Suwanmajo T, Sanchavanakit N, Phisalaphong M. Curcumin-loaded bacterial cellulose/alginate/gelatin as a multifunctional biopolymer composite movie. Molecules. 2020;25(17):3800.
Barud HS, Souza JL, Santos DB, Crespi MS, Ribeiro CA, Messaddeq Y, Ribeiro SJ. Bacterial cellulose/poly (3-hydroxybutyrate) composite membranes. Carbohyd Polym. 2011;83(3):1279–84.
Wang H, Shao Z, Bacher M, Liebner F, Rosenau T. Fluorescent cellulose aerogels containing covalently immobilized (ZnS) x (CuInS2) 1–x/ZnS (core/shell) quantum dots. Cellulose. 2013;20(6):3007–24.
Ngoensawat U, Parnsubsakul A, Kaitphaiboonwet S, Wutikhun T, Sapcharoenkun C, Pienpinijtham P, Ekgasit S. Luminescent nanohybrid of ZnO quantum dot and cellulose nanocrystal as anti-counterfeiting ink. Carbohyd Polym. 2021;262:117864.
Li X, Chen S, Hu W, Shi S, Shen W, Zhang X, Wang H. In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohyd Polym. 2009;76(4):509–12.
Chanthiwong M, Mongkolthanaruk W, Eichhorn SJ, Pinitsoontorn S. Controlling the processing of co-precipitated magnetic bacterial cellulose/iron oxide nanocomposites. Mater Des. 2020;196:109148.
Park S, Park J, Jo I, Cho S-P, Sung D, Ryu S, Park M, Min Ok-A, Kim J, Hong S. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials. 2015;58:93–102.
Yao J, Ji P, Sheng N, Guan F, Zhang M, Wang B, Chen S, Wang H. Hierarchical core-sheath polypyrrole@ carbon nanotube/bacterial cellulose macrofibers with excessive electrochemical efficiency for all-solid-state supercapacitors. Electrochim Acta. 2018;283:1578–88.
He F, Zhao D. Manipulating the scale and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol. 2007;41(17):6216–21.
Zhu C, Jiang J, Jia Y, Xu ZP, Zhang L. Past drug supply system: immunomodulatory layered double hydroxide nanoadjuvants take a necessary step ahead in most cancers immunotherapy. Acc Mater Res. 2023. https://doi.org/10.1021/accountsmr.3c00094.
Wang H, Najibi AJ, Sobral MC, Search engine marketing BR, Lee JY, Wu D, Li AW, Verbeke CS, Mooney DJ. Biomaterial-based scaffold for in situ chemo-immunotherapy to deal with poorly immunogenic tumors. Nat Commun. 2020;11(1):5696.
Wang C, Solar Z, Zhao C, Zhang Z, Wang H, Liu Y, Guo Y, Zhang B, Gu L, Yu Y. Sustaining manganese in tumor to activate cGAS-STING pathway evokes a strong abscopal anti-tumor impact. J Management Launch. 2021;331:480–90.
Wang Y, Wang Z, Chen B, Yin Q, Pan M, Xia H, Zhang B, Yan Y, Jiang Z, Zhang Q. Cooperative self-assembled nanoparticle induces sequential immunogenic cell demise and toll-like receptor activation for synergistic chemo-immunotherapy. Nano Lett. 2021;21(10):4371–80.
Yang L, Lang Y, Wu H, Xiang Ok, Wang Y, Yu M, Liu Y, Yang B, He L, Lu G. Engineered toll-like receptor nanoagonist binding to extracellular matrix elicits secure and sturdy antitumor immunity. ACS Nano. 2023;17(6):5340–53.
Aref AM, Tohamy AA, Abdel Moneim AE, Sayed RH. Cinnamic acid attenuates cisplatin-induced hepatotoxicity and nephrotoxicity. 2016.
Nayak N, Sathar SA, Mughal S, Duttagupta S, Mathur M, Chopra P. The character and significance of liver cell vacuolation following hepatocellular damage—an evaluation primarily based on observations on rats rendered tolerant to hepatotoxic injury. Virchows Arch. 1996;428(6):353–65.
Jing L, Wang Y, Yang Y, Yue X, Dai Z. Hyaluronic acid modified hole Prussian blue nanoparticles loading 10-hydroxycamptothecin for concentrating on thermochemotherapy of most cancers. Theranostics. 2016;6(1):40.
Chen H, Ma Y, Wang X, Wu X, Zha Z. Facile synthesis of Prussian blue nanoparticles as pH-responsive drug carriers for mixed photothermal-chemo therapy of most cancers. RSC Adv. 2017;7(1):248–55.
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug supply. Nat Rev Drug Discovery. 2021;20(2):101–24.
Liang Y, Hao Y, Wu Y, Zhou Z, Li J, Solar X, Liu Y-N. Built-in hydrogel platform for programmed antitumor remedy primarily based on close to infrared-triggered hyperthermia and vascular disruption. ACS Appl Mater Interfaces. 2019;11(24):21381–90.
Wang Z, Zeng W, Chen Z, Suo W, Quan H, Tan Z-J. An intratumoral injectable nanozyme hydrogel for hypoxia-resistant thermoradiotherapy. Colloids Surf, B. 2021;207:112026.
Irvine DJ, Dane EL. Enhancing most cancers immunotherapy with nanomedicine. Nat Rev Immunol. 2020;20(5):321–34.
Cano-Mejia J, Burga RA, Sweeney EE, Fisher JP, Bollard CM, Sandler AD, Cruz CRY, Fernandes R. Prussian blue nanoparticle-based photothermal remedy mixed with checkpoint inhibition for photothermal immunotherapy of neuroblastoma. Nanomed Nanotechnol Biol Med. 2017;13(2):771–81.
Hu M, Furukawa S, Ohtani R, Sukegawa H, Nemoto Y, Reboul J, Kitagawa S, Yamauchi Y. Synthesis of prussian blue nanoparticles with a hole inside by managed chemical etching. Angew Chem Int Ed. 2012;51(4):984–8.