London Escorts sunderland escorts 1v1.lol unblocked yohoho 76 https://www.symbaloo.com/mix/yohoho?lang=EN yohoho https://www.symbaloo.com/mix/agariounblockedpvp https://yohoho-io.app/ https://www.symbaloo.com/mix/agariounblockedschool1?lang=EN
6 C
New York
Friday, January 31, 2025

Correlated insulator and Chern insulators in pentalayer rhombohedral-stacked graphene


  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sharpe, A. L. et al. Emergent ferromagnetism close to three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Serlin, M. et al. Intrinsic quantized anomalous Corridor impact in a moiré heterostructure. Science 367, 900–903 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. et al. Proof of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tang, Y. et al. Simulation of Hubbard mannequin physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Correlated digital phases in twisted bilayer transition steel dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. et al. Tunable orbital ferromagnetism at noninteger filling of a moiré superlattice. Nano Lett. 22, 238–245 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Min, H. & MacDonald, A. H. Digital construction of multilayer graphene. Prog. Theor. Phys. Suppl. 176, 227–252 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, F., Sahu, B., Min, H. & MacDonald, A. H. Band construction of ABC-stacked graphene trilayers. Phys. Rev. B 82, 035409 (2010).

    Article 

    Google Scholar
     

  • Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Corridor states in chirally stacked few-layer graphene methods. Phys. Rev. Lett. 106, 156801 (2011).

    Article 

    Google Scholar
     

  • Koshino, M. & McCann, E. Trigonal warping and Berry’s part N? in ABC-stacked multilayer graphene. Phys. Rev. B 80, 165409 (2009).

    Article 

    Google Scholar
     

  • Yang, N., Li, C., Tang, Y. & Yelgel, C. Digital construction of ABC-stacked multilayer graphene and trigonal warping: a primary rules calculation. J. Phys. Conf. Ser. 707, 012022 (2016).

    Article 

    Google Scholar
     

  • Shi, Y. et al. Digital part separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, Ok. & Younger, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pierucci, D. et al. Proof for flat bands close to the Fermi degree in epitaxial rhombohedral multilayer graphene. ACS Nano 9, 5432–5439 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kerelsky, A. et al. Moiréless correlations in ABCA graphene. Proc. Natl Acad. Sci. USA 118, e2017366118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Damaged-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Freitag, F., Trbovic, J., Weiss, M. & Schönenberger, C. Spontaneously gapped floor state in suspended bilayer graphene. Phys. Rev. Lett. 108, 76602 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Bao, W. et al. Stacking-dependent band hole and quantum transport in trilayer graphene. Nat. Phys. 7, 948–952 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Velasco, J. et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat. Nanotechnol. 7, 156–160 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Myhro, Ok. et al. Massive tunable intrinsic hole in rhombohedral-stacked tetralayer graphene at half filling. 2D Mater. 5, 045013 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pamuk, B., Baima, J., Mauri, F. & Calandra, M. Magnetic hole opening in rhombohedral-stacked multilayer graphene from first rules. Phys. Rev. B 95, 075422 (2017).

    Article 

    Google Scholar
     

  • Jia, J., Gorbar, E. V. & Gusynin, V. P. Hole technology in ABC-stacked multilayer graphene: screening versus band flattening. Phys. Rev. B 88, 205428 (2013).

    Article 

    Google Scholar
     

  • Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).

    Article 
    CAS 

    Google Scholar
     

  • de la Barrera, S. C. et al. Cascade of isospin part transitions in Bernal-stacked bilayer graphene at zero magnetic discipline. Nat. Phys. 18, 771–775 (2022).

    Article 

    Google Scholar
     

  • Seiler, A. M. et al. Quantum cascade of correlated phases in trigonally warped bilayer graphene. Nature 608, 298–302 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, F., Min, H., Polini, M. & MacDonald, A. H. Spontaneous inversion symmetry breaking in graphene bilayers. Phys. Rev. B 81, 041402 (2010).

    Article 

    Google Scholar
     

  • Jung, J., Zhang, F. & MacDonald, A. H. Lattice concept of pseudospin ferromagnetism in bilayer graphene: competing interaction-induced quantum Corridor states. Phys. Rev. B 83, 115408 (2011).

    Article 

    Google Scholar
     

  • Nandkishore, R. & Levitov, L. Quantum anomalous Corridor state in bilayer graphene. Phys. Rev. B 82, 115124 (2010).

    Article 

    Google Scholar
     

  • Vafek, O. & Yang, Ok. Many-body instability of Coulomb interacting bilayer graphene: renormalization group method. Phys. Rev. B 81, 041401 (2010).

    Article 

    Google Scholar
     

  • Lemonik, Y., Aleiner, I. & Fal’Ko, V. I. Competing nematic, antiferromagnetic, and spin-flux orders within the floor state of bilayer graphene. Phys. Rev. B 85, 245451 (2012).

    Article 

    Google Scholar
     

  • Kharitonov, M. Antiferromagnetic state in bilayer graphene. Phys. Rev. B 86, 195435 (2012).

    Article 

    Google Scholar
     

  • Xu, D. H. et al. Stacking order, interplay, and weak floor magnetism in layered graphene sheets. Phys. Rev. B 86, 201404 (2012).

    Article 

    Google Scholar
     

  • Solar, Ok., Yao, H., Fradkin, E. & Kivelson, S. A. Topological insulators and nematic phases from spontaneous symmetry breaking in 2D Fermi methods with a quadratic band crossing. Phys. Rev. Lett. 103, 046811 (2009).

    Article 

    Google Scholar
     

  • Streda, P. Concept of quantised Corridor conductivity in two dimensions. J. Phys. C 15, L717 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Li, J., Tupikov, Y., Watanabe, Ok., Taniguchi, T. & Zhu, J. Efficient Landau degree diagram of bilayer graphene. Phys. Rev. Lett. 120, 47701 (2018).

    Article 
    CAS 

    Google Scholar
     

  • McCann, E. & Fal’ko, V. I. Landau-level degeneracy and quantum Corridor impact in a graphite bilayer. Phys. Rev. Lett. 96, 86805 (2006).

    Article 

    Google Scholar
     

  • Slizovskiy, S., McCann, E., Koshino, M. & Fal’ko, V. I. Movies of rhombohedral graphite as two-dimensional topological semimetals. Commun. Phys. 2, 164 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kopnin, N. B., Ijäs, M., Harju, A. & Heikkilä, T. T. Excessive-temperature floor superconductivity in rhombohedral graphite. Phys. Rev. B 87, 140503 (2013).

    Article 

    Google Scholar
     

  • Ghazaryan, A., Holder, T., Berg, E. & Serbyn, M. Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity. Phys. Rev. B 107, 104502 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Calvera, V., Kivelson, S. A. & Berg, E. Pseudo-spin order of Wigner crystals in multi-valley electron gases. Low Temp. Phys. 49, 679–700 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ju, L. et al. Topological valley transport at bilayer graphene area partitions. Nature 520, 650–655 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional supplies. Nano Lett. 18, 8011–8015 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Geisenhof, F. R. et al. Quantum anomalous Corridor octet pushed by orbital magnetism in bilayer graphene. Nature 598, 53–58 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Varlet, A. et al. Anomalous sequence of quantum Corridor liquids revealing a tunable Lifshitz transition in bilayer graphene. Phys. Rev. Lett. 113, 116602 (2014).

    Article 

    Google Scholar
     

  • Related Articles

    Social Media Auto Publish Powered By : XYZScripts.com