Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Sharpe, A. L. et al. Emergent ferromagnetism close to three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).
Serlin, M. et al. Intrinsic quantized anomalous Corridor impact in a moiré heterostructure. Science 367, 900–903 (2020).
Chen, G. et al. Proof of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).
Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).
Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).
Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).
Tang, Y. et al. Simulation of Hubbard mannequin physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).
Wang, L. et al. Correlated digital phases in twisted bilayer transition steel dichalcogenides. Nat. Mater. 19, 861–866 (2020).
Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).
Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020).
Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).
Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).
Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70 (2020).
Chen, G. et al. Tunable orbital ferromagnetism at noninteger filling of a moiré superlattice. Nano Lett. 22, 238–245 (2022).
Min, H. & MacDonald, A. H. Digital construction of multilayer graphene. Prog. Theor. Phys. Suppl. 176, 227–252 (2008).
Zhang, F., Sahu, B., Min, H. & MacDonald, A. H. Band construction of ABC-stacked graphene trilayers. Phys. Rev. B 82, 035409 (2010).
Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Corridor states in chirally stacked few-layer graphene methods. Phys. Rev. Lett. 106, 156801 (2011).
Koshino, M. & McCann, E. Trigonal warping and Berry’s part N? in ABC-stacked multilayer graphene. Phys. Rev. B 80, 165409 (2009).
Yang, N., Li, C., Tang, Y. & Yelgel, C. Digital construction of ABC-stacked multilayer graphene and trigonal warping: a primary rules calculation. J. Phys. Conf. Ser. 707, 012022 (2016).
Shi, Y. et al. Digital part separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).
Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).
Zhou, H., Xie, T., Taniguchi, T., Watanabe, Ok. & Younger, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).
Pierucci, D. et al. Proof for flat bands close to the Fermi degree in epitaxial rhombohedral multilayer graphene. ACS Nano 9, 5432–5439 (2015).
Kerelsky, A. et al. Moiréless correlations in ABCA graphene. Proc. Natl Acad. Sci. USA 118, e2017366118 (2021).
Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Damaged-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010).
Freitag, F., Trbovic, J., Weiss, M. & Schönenberger, C. Spontaneously gapped floor state in suspended bilayer graphene. Phys. Rev. Lett. 108, 76602 (2012).
Bao, W. et al. Stacking-dependent band hole and quantum transport in trilayer graphene. Nat. Phys. 7, 948–952 (2011).
Velasco, J. et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat. Nanotechnol. 7, 156–160 (2012).
Myhro, Ok. et al. Massive tunable intrinsic hole in rhombohedral-stacked tetralayer graphene at half filling. 2D Mater. 5, 045013 (2018).
Pamuk, B., Baima, J., Mauri, F. & Calandra, M. Magnetic hole opening in rhombohedral-stacked multilayer graphene from first rules. Phys. Rev. B 95, 075422 (2017).
Jia, J., Gorbar, E. V. & Gusynin, V. P. Hole technology in ABC-stacked multilayer graphene: screening versus band flattening. Phys. Rev. B 88, 205428 (2013).
Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).
de la Barrera, S. C. et al. Cascade of isospin part transitions in Bernal-stacked bilayer graphene at zero magnetic discipline. Nat. Phys. 18, 771–775 (2022).
Seiler, A. M. et al. Quantum cascade of correlated phases in trigonally warped bilayer graphene. Nature 608, 298–302 (2022).
Zhang, F., Min, H., Polini, M. & MacDonald, A. H. Spontaneous inversion symmetry breaking in graphene bilayers. Phys. Rev. B 81, 041402 (2010).
Jung, J., Zhang, F. & MacDonald, A. H. Lattice concept of pseudospin ferromagnetism in bilayer graphene: competing interaction-induced quantum Corridor states. Phys. Rev. B 83, 115408 (2011).
Nandkishore, R. & Levitov, L. Quantum anomalous Corridor state in bilayer graphene. Phys. Rev. B 82, 115124 (2010).
Vafek, O. & Yang, Ok. Many-body instability of Coulomb interacting bilayer graphene: renormalization group method. Phys. Rev. B 81, 041401 (2010).
Lemonik, Y., Aleiner, I. & Fal’Ko, V. I. Competing nematic, antiferromagnetic, and spin-flux orders within the floor state of bilayer graphene. Phys. Rev. B 85, 245451 (2012).
Kharitonov, M. Antiferromagnetic state in bilayer graphene. Phys. Rev. B 86, 195435 (2012).
Xu, D. H. et al. Stacking order, interplay, and weak floor magnetism in layered graphene sheets. Phys. Rev. B 86, 201404 (2012).
Solar, Ok., Yao, H., Fradkin, E. & Kivelson, S. A. Topological insulators and nematic phases from spontaneous symmetry breaking in 2D Fermi methods with a quadratic band crossing. Phys. Rev. Lett. 103, 046811 (2009).
Streda, P. Concept of quantised Corridor conductivity in two dimensions. J. Phys. C 15, L717 (1982).
Li, J., Tupikov, Y., Watanabe, Ok., Taniguchi, T. & Zhu, J. Efficient Landau degree diagram of bilayer graphene. Phys. Rev. Lett. 120, 47701 (2018).
McCann, E. & Fal’ko, V. I. Landau-level degeneracy and quantum Corridor impact in a graphite bilayer. Phys. Rev. Lett. 96, 86805 (2006).
Slizovskiy, S., McCann, E., Koshino, M. & Fal’ko, V. I. Movies of rhombohedral graphite as two-dimensional topological semimetals. Commun. Phys. 2, 164 (2019).
Kopnin, N. B., Ijäs, M., Harju, A. & Heikkilä, T. T. Excessive-temperature floor superconductivity in rhombohedral graphite. Phys. Rev. B 87, 140503 (2013).
Ghazaryan, A., Holder, T., Berg, E. & Serbyn, M. Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity. Phys. Rev. B 107, 104502 (2023).
Calvera, V., Kivelson, S. A. & Berg, E. Pseudo-spin order of Wigner crystals in multi-valley electron gases. Low Temp. Phys. 49, 679–700 (2023).
Ju, L. et al. Topological valley transport at bilayer graphene area partitions. Nature 520, 650–655 (2015).
Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional supplies. Nano Lett. 18, 8011–8015 (2018).
Geisenhof, F. R. et al. Quantum anomalous Corridor octet pushed by orbital magnetism in bilayer graphene. Nature 598, 53–58 (2021).
Varlet, A. et al. Anomalous sequence of quantum Corridor liquids revealing a tunable Lifshitz transition in bilayer graphene. Phys. Rev. Lett. 113, 116602 (2014).