Duffner, F. et al. Put up-lithium-ion battery cell manufacturing and its compatibility with lithium-ion cell manufacturing infrastructure. Nat. Power 6, 123–134 (2021).
Wang, L., Chen, B., Ma, J., Cui, G. & Chen, L. Reviving lithium cobalt oxide-based lithium secondary batteries—towards a better power density. Chem. Soc. Rev. 47, 6505–6602 (2018).
Ryu, H. H., Solar, H. H., Myung, S. T., Yoon, C. S. & Solar, Y. Okay. Lowering cobalt from lithium-ion batteries for the electrical car period. Power Environ. Sci. 14, 844–852 (2021).
Zeng, A. et al. Battery expertise and recycling alone is not going to save the electrical mobility transition from future cobalt shortages. Nat. Commun. 13, 1341 (2022).
Voronina, N., Solar, Y. Okay. & Myung, S. T. Co-free layered cathode supplies for prime power density lithium-ion batteries. ACS Power Lett. 5, 1814–1824 (2020).
Bianchini, M., Roca-Ayats, M., Hartmann, P., Brezesinski, T. & Janek, J. There and again once more—the journey of LiNiO2 as a cathode lively materials. Angew. Chem. Int. Ed. 58, 10434–10458 (2019).
Yu, L. et al. Excessive nickel and no cobalt—the pursuit of next-generation layered oxide cathodes. ACS Appl. Mater. Interfaces 14, 23056–23065 (2022).
Wang, C. Y. et al. Resolving atomic-scale part transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter 4, 2013–2026 (2021).
Wang, M. J., Kazyak, E., Dasgupta, N. P. & Sakamoto, J. Transitioning solid-state batteries from lab to market: linking electro-chemo-mechanics with sensible issues. Joule 5, 1371–1390 (2021).
Wang, C. H. et al. All-solid-state lithium batteries enabled by sulfide electrolytes: from basic analysis to sensible engineering design. Power Environ. Sci. 14, 2577–2619 (2021).
Zhou, L. D. et al. Excessive areal capability, lengthy cycle life 4?V ceramic all-solid-state Li-ion batteries enabled by chloride strong electrolytes. Nat. Power 7, 83–93 (2022).
Wang, C. et al. A common wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Sci. Adv. 7, eabh1896 (2021).
Zhou, L. D. et al. A brand new halospinel superionic conductor for high-voltage all strong state lithium batteries. Power Environ. Sci. 13, 2056–2063 (2020).
Yin, Y. C. et al. A LaCl3-based lithium superionic conductor appropriate with lithium metallic. Nature 616, 77–83 (2023).
Deng, S. X. et al. Eliminating the detrimental results of conductive brokers in sulfide-based solid-state batteries. ACS Power Lett. 5, 1243–1251 (2020).
Wang, L. L. et al. Bidirectionally appropriate buffering layer allows extremely steady and conductive interface for 4.5?V sulfide-based all-solid-state lithium batteries. Adv. Power Mater. 11, 2100881 (2021).
Culver, S. P., Koerver, R., Zeier, W. G. & Janek, J. On the performance of coatings for cathode lively supplies in thiophosphate-based all-solid-state batteries. Adv. Power Mater. 9, 1900626 (2019).
Ma, Y. et al. Biking efficiency and limitations of LiNiO2 in solid-state batteries. ACS Power Lett. 6, 3020–3028 (2021).
Lee, Y.-G. et al. Excessive-energy long-cycling all-solid-state lithium metallic batteries enabled by silver–carbon composite anodes. Nat. Power 5, 299–308 (2020).
Zhang, W. et al. Interfacial processes and affect of composite cathode microstructure controlling the efficiency of all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 17835–17845 (2017).
Cao, D. et al. Steady thiophosphate-based all-solid-state lithium batteries by means of conformally interfacial nanocoating. Nano Lett. 20, 1483–1490 (2020).
Wang, Y. et al. Steady Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery. eScience 2, 537–545 (2022).
Zhao, Y., Zheng, Okay. & Solar, X. L. Addressing interfacial points in liquid-based and solid-state batteries by atomic and molecular layer deposition. Joule 2, 2583–2604 (2018).
Chen, L. et al. Mechanism for Al2O3 atomic layer deposition on LiMn2O4 from in situ measurements and ab initio calculations. Chem 4, 2418–2435 (2018).
Warburton, R. E., Younger, M. J., Letourneau, S., Elam, J. W. & Greeley, J. Descriptor-based evaluation of atomic layer deposition mechanisms on spinel LiMn2O4 lithium-ion battery cathodes. Chem. Mater. 32, 1794–1806 (2020).
Wang, L. et al. A novel bifunctional self-stabilized technique enabling 4.6?V LiCoO2 with wonderful long-term cyclability and high-rate functionality. Adv. Sci. 6, 1900355 (2019).
Huang, H. et al. Uncommon double ligand holes as catalytic lively websites in LiNiO2. Nat. Commun. 14, 2112 (2023).
Xu, J. et al. Understanding the degradation mechanism of lithium nickel oxide cathodes for Li-ion batteries. ACS Appl. Mater. Interfaces 8, 31677–31683 (2016).
Li, N. et al. Unraveling the cationic and anionic redox reactions in a standard layered oxide cathode. ACS Power Lett. 4, 2836–2842 (2019).
Zheng, X. et al. Principle-driven design of high-valence metallic websites for water oxidation confirmed utilizing in situ comfortable X-ray absorption. Nat. Chem. 10, 149–154 (2018).
Guo, H. et al. Antiferromagnetic correlations within the metallic strongly correlated transition metallic oxide LaNiO3. Nat. Commun. 9, 43 (2018).
Xu, J. et al. Elucidating anionic oxygen exercise in lithium-rich layered oxides. Nat. Commun. 9, 947 (2018).
Mu, L. et al. Structural and electrochemical impacts of Mg/Mn twin dopants on the LiNiO2 cathode in Li-metal batteries. ACS Appl. Mater. Interfaces 12, 12874–12882 (2020).
Inexperienced, R. J., Haverkort, M. W. & Sawatzky, G. A. Bond disproportionation and dynamical cost fluctuations within the perovskite rare-earth nickelates. Phys. Rev. B 94, 195127 (2016).
Agrestini, S. et al. Nature of the magnetism of iridium within the double perovskite Sr2CoIrO6. Phys. Rev. B 100, 014443 (2019).
Han, M. et al. Eliminating transition metallic migration and anionic redox to grasp voltage hysteresis of lithium-rich layered oxides. Adv. Power Mater. 10, 1903634 (2020).
Zhang, Y. B. et al. Self-stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries by means of additional LiOH. Power Storage Mater. 41, 505–514 (2021).
Kim, A. Y. et al. Stabilizing impact of a hybrid floor coating on a Ni-rich NCM cathode materials in all-solid-state batteries. Chem. Mater. 31, 9664–9672 (2019).
Levartovsky, Y. et al. Enhancement of structural, electrochemical, and thermal properties of Ni?wealthy LiNi0.85Co0.1Mn0.05O2 cathode supplies for Li?ion batteries by Al and Ti doping. Batter. Supercaps 4, 221–231 (2020).
Fang, R., Liu, Y., Li, Y., Manthiram, A. & Goodenough, J. B. Reaching steady all-solid-state lithium-metal batteries by tuning the cathode–electrolyte interface and ionic/digital transport inside the cathode. Mater. Immediately 64, 52–60 (2023).
Kim, U. H. et al. Microstructure- and interface-modified Ni-rich cathode for high-energy-density all-solid-state lithium batteries. ACS Power Lett. 8, 809–817 (2023).
Zhao, F. P. et al. Tuning bifunctional interface for superior sulfide-based all-solid-state batteries. Power Storage Mater. 33, 139–146 (2020).
Ma, Y. et al. Superior nanoparticle coatings for stabilizing layered Ni-rich oxide cathodes in solid-state batteries. Adv. Funct. Mater. 32, 2111829 (2022).
Wang, P. et al. Electro-chemo-mechanical points on the interfaces in solid-state lithium metallic batteries. Adv. Funct. Mater. 29, 1900950 (2019).
Tallman, Okay. R. et al. Nickel-rich nickel manganese cobalt (NMC622) cathode lithiation mechanism and prolonged biking results utilizing operando X-ray absorption spectroscopy. J. Phys. Chem. C. 125, 58–73 (2020).
Zak, J. J., Kim, S. S., Laskowski, F. A. L. & See, Okay. A. An exploration of sulfur redox in lithium battery cathodes. J. Am. Chem. Soc. 144, 10119–10132 (2022).
Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries utilizing time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019).
Deng, S. X. et al. Perception into cathode floor to spice up the efficiency of solid-state batteries. Power Storage Mater. 35, 661–668 (2021).
Wu, Y. Q. et al. Extremely reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries. Power Environ. Sci. 15, 3470–3482 (2022).
Strauss, F. et al. Li2ZrO3-coated NCM622 for utility in inorganic solid-state batteries: position of floor carbonates within the biking efficiency. ACS Appl. Mater. Interfaces 12, 57146–57154 (2020).
Auvergniot, J. et al. Interface stability of argyrodite Li6PS5Cl towards LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017).
Gao, X. et al. Stable-state lithium battery cathodes working at low pressures. Joule 6, 636–646 (2022).
Wu, F., Maier, J. & Yu, Y. Tips and traits for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020).
Luo, S. et al. Development of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021).
Wang, L. et al. In-situ visualization of the space-charge-layer impact on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 11, 5889 (2020).
Lutterotti, L. Complete sample becoming for the mixed dimension–pressure–stress–texture dedication in skinny movie diffraction. Nucl. Instrum. Strategies Phys. Res. B 268, 334–340 (2010).
Cowan, R. D. The Principle of Atomic Construction and Spectra (College of California Press, 1981).
Slater, J. C. & Koster, G. F. Simplified LCAO methodology for the periodic potential downside. Phys. Rev. 94, 1498–1524 (1954).