London Escorts sunderland escorts 1v1.lol unblocked yohoho 76 https://www.symbaloo.com/mix/yohoho?lang=EN yohoho https://www.symbaloo.com/mix/agariounblockedpvp https://yohoho-io.app/ https://www.symbaloo.com/mix/agariounblockedschool1?lang=EN
0 C
New York
Monday, February 3, 2025

Cutting-edge on the separation and purification of proteins by magnetic nanoparticles | Journal of Nanobiotechnology


  • Alves MHME, Nascimento GA, Cabrera MP, da Cruz Silvério SI, Nobre C, Teixeira JA, de Carvalho Júnior LB. Trypsin purification utilizing magnetic particles of azocasein-iron composite. Meals Chem. 2017;226:75–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amiri S, Mehrnia MR, Roudsari FP. Enhancing purification effectivity of affinity functionalized composite agarose micro beads utilizing Fe3O4 nanoparticles. J Chromatogr B. 2017;1041:27–36.

    Article 

    Google Scholar
     

  • Asgharnasl S, Eivazzadeh-Keihan R, Radinekiyan F, Maleki A. Preparation of a novel magnetic bionanocomposite based mostly on factionalized chitosan by creatine and its software within the synthesis of polyhydroquinoline, 1,4-dyhdropyridine and 1, 8-dioxo-decahydroacridine derivatives. Int J Biol Macromol. 2020;144:29–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aygar G, Kaya M, Özkan N, Kocab?y?k S, Volkan M. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins. J Phys Chem Solids. 2015;87:64–71.

    Article 
    CAS 

    Google Scholar
     

  • Bahrami A, Hejazi P. Electrostatic immobilization of pectinase on negatively charged AOT-Fe3O4 nanoparticles. J Mol Catal B Enzym. 2013;93:1–7.

    Article 
    CAS 

    Google Scholar
     

  • Bao J, Chen W, Liu T, Zhu Y, Jin P, Wang L, et al. Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano. 2007;1(4):293–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhosale SV, Kanhe NS, Bhoraskar SV, Bhat SK, Bulakhe RN, Shim JJ, Mathe VL. Micro-structural evaluation of NiFe2O4 nanoparticles synthesized by thermal plasma route and its suitability for BSA adsorption. J Mater Sci Mater Med. 2015;26(8):1–15.

    Article 
    CAS 

    Google Scholar
     

  • Bloemen M, Vanpraet L, Ceulemans M, Parac-Vogt TN, Clays Okay, Geukens N, et al. Selective protein purification by PEG–IDA-functionalized iron oxide nanoparticles. RSC Adv. 2015;5(82):66549–53.

    Article 
    CAS 

    Google Scholar
     

  • Bodnar ED, Perreault H. Qualitative and quantitative evaluation on using magnetic nanoparticles for glycopeptide enrichment. Anal Chem. 2013;85(22):10895–903.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borlido L, Moura L, Azevedo AM, Roque AC, Aires-Barros MR, Farinha JPS. Stimuli-responsive magnetic nanoparticles for monoclonal antibody purification. Biotechnol J. 2013;8(6):709–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bornhorst JA, Falke JJ. Purification of proteins utilizing polyhistidine affinity tags. In: Strategies in enzymology, vol. 326. USA: Tutorial Press; 2000. p. 245–54.


    Google Scholar
     

  • Bucak S, Jones DA, Laibinis PE, Hatton TA. Protein separations utilizing colloidal magnetic nanoparticles. Biotechnol Prog. 2003;19(2):477–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Busayapongchai P, Siri S. Estrogenic receptor-functionalized magnetite nanoparticles for speedy separation of phytoestrogens in plant extracts. Appl Biochem Biotechnol. 2017;181(3):925–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Büyükköro?lu G, Dora DD, Özdemir F, H?zel C. Strategies for protein evaluation. In: Omics applied sciences and bio-engineering. USA: Tutorial Press; 2018. p. 317–51.

    Chapter 

    Google Scholar
     

  • Cao N, Zou X, Huang Y, Zhao Y. Preparation of NiFe2O4 architectures for affinity separation of histidine-tagged proteins. Mater Lett. 2015;144:161–4.

    Article 
    CAS 

    Google Scholar
     

  • Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Laganà A. Current purposes of magnetic solid-phase extraction for pattern preparation. Chromatographia. 2019;82(8):1251–74.

    Article 
    CAS 

    Google Scholar
     

  • Casalini S, Dumitru AC, Leonardi F, Bortolotti CA, Herruzo ET, Campana A, et al. Multiscale sensing of antibody–antigen interactions by natural transistors and single-molecule power spectroscopy. ACS Nano. 2015;9(5):5051–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang M, Chang YJ, Chao PY, Yu Q. Exosome purification based mostly on PEG-coated Fe3O4 nanoparticles. PLoS ONE. 2018;13(6): e0199438.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang M, Qin Q, Wang B, Xia T, Lv W, Solar X, et al. Carboxymethylated polyethylenimine modified magnetic nanoparticles particularly for purification of His-tagged protein. J Sep Sci. 2019;42(3):744–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen F, Zhao W, Zhang J, Kong J. Magnetic two-dimensional molecularly imprinted supplies for the popularity and separation of proteins. Phys Chem Chem Phys. 2016;18(2):718–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Q, Hu X, Zhang DD, Chen XW, Wang JH. Selective isolation of myosin Subfragment-1 with a DNA-Polyoxovanadate bioconjugate. Bioconjug Chem. 2017;28(12):2976–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Jiang P, Liu S, Zhao H, Cui Y, Qin S. Purification of 6× His-tagged phycobiliprotein utilizing zinc-decorated silica-coated magnetic nanoparticles. J Chromatogr B. 2011;879(13–14):993–7.

    Article 
    CAS 

    Google Scholar
     

  • Cheng F, Qian-Cheng F, Wei H, Xian-Ming Z, Qing W. Preparation and characterization of PEGylated thiophilic nanoparticles for speedy antibody separation. Chin J Anal Chem. 2018;46(12):1953–60.

    Article 
    CAS 

    Google Scholar
     

  • Cheng G, Yu X, Zhou MD, Zheng SY. Preparation of magnetic graphene composites with hierarchical construction for selective seize of phosphopeptides. J Mater Chem B. 2014;2(29):4711–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Çimen D, Bereli N, Denizli A. Steel-chelated magnetic nanoparticles for protein C purification. Sep Sci Technol. 2020;55(13):2259–68.

    Article 

    Google Scholar
     

  • Cong H, Xu X, Yu B, Yang Z, Zhang X. A wise temperature and magnetic-responsive gating carbon nanotube membrane for ion and protein transportation. Sci Rep. 2016;6(1):1–10.

    Article 

    Google Scholar
     

  • Cordova Okay, Michiels C, Verachtert H, Derdelinckx G. Polydopamine imprinted magnetic nanoparticles as a way to purify and detect class II hydrophobins from heterogeneous mixtures. Talanta. 2016;160:761–7.

    Article 
    PubMed 

    Google Scholar
     

  • Davis RH. Principle for crossflow microfiltration. In: Membrane handbook. Boston: Springer; 1992. p. 480–505.

    Chapter 

    Google Scholar
     

  • Ding C, Ma X, Yao X, Jia L. Facile synthesis of copper (II)-decorated magnetic particles for selective removing of hemoglobin from blood samples. J Chromatogr A. 2015;1424:18–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du X, He Q, Zhang L, Liu C, Zhu J, Kuang B, et al. Selective and cleavable extraction of sialo-glycoproteins by disulfide-linked amino-oxy-functionalized Fe3O4 magnetic nanoparticles. Bioconjugate Chem. 2017;28(10):2514–7.

    Article 
    CAS 

    Google Scholar
     

  • Eivazzadeh-Keihan R, Maleki A, De La Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, et al. Carbon-based nanomaterials for tissue engineering of bone: constructing new bone on small black scaffolds: a evaluation. J Adv Res. 2019;18:185–201.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Baradaran B, de la Guardia M, Hejazi M, Sohrabi H, et al. Current progress in optical and electrochemical biosensors for sensing of Clostridium botulinum neurotoxin. TrAC Developments Anal Chem. 2018;103:184–97.

    Article 
    CAS 

    Google Scholar
     

  • Eivazzadeh-Keihan R, Radinekiyan F, Aliabadi HAM, Sukhtezari S, Tahmasebi B, Maleki A, Madanchi H. Chitosan hydrogel/silk fibroin/Mg (OH) 2 nanobiocomposite as a novel scaffold with antimicrobial exercise and improved mechanical properties. Sci Rep. 2021;11(1):1–13.

    Article 

    Google Scholar
     

  • Eivazzadeh-Keihan R, Taheri-Ledari R, Khosropour N, Dalvand S, Maleki A, Mousavi-Khoshdel SM, Sohrabi H. Fe3O4/GO@ melamine-ZnO nanocomposite: a promising versatile software for natural catalysis and electrical capacitance. Colloids Surf A. 2020;587: 124335.

    Article 
    CAS 

    Google Scholar
     

  • Esmaeili MS, Varzi Z, Eivazzadeh-Keihan R, Maleki A, Ghafuri H. Design and improvement of pure and biocompatible raffinose-Cu2O magnetic nanoparticles as a heterogeneous nanocatalyst for the selective oxidation of alcohols. Mol Catal. 2020;492: 111037.

    Article 
    CAS 

    Google Scholar
     

  • Farzi-Khajeh H, Safa KD, Dastmalchi S. Preparation of p-aminophenol modified superparamagnetic iron oxide nanoparticles for purification of ?-amylase from the bovine milk. J Chromatogr B. 2017;1068:210–7.

    Article 

    Google Scholar
     

  • Feczkó T, Muskotál A, Gál L, Szépvölgyi J, Sebestyén A, Vonderviszt F. Synthesis of Ni–Zn ferrite nanoparticles in a radiofrequency thermal plasma reactor and their use for purification of histidine-tagged proteins. J Nanopart Res. 2008;10(1):227–32.

    Article 

    Google Scholar
     

  • Feng G, Hu D, Yang L, Cui Y, Cui XA, Li H. Immobilized-metal affinity chromatography adsorbent with paramagnetism and its software in purification of histidine-tagged proteins. Sep Purif Technol. 2010;74(2):253–60.

    Article 
    CAS 

    Google Scholar
     

  • Feng X, Deng C, Gao M, Zhang X. Facile and simply popularized synthesis of l-cysteine-functionalized magnetic nanoparticles based mostly on one-step functionalization for extremely environment friendly enrichment of glycopeptides. Anal Bioanal Chem. 2018;410(3):989–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feyzio?lu Demir E, ÖztürkAtay N, Koruyucu M, Kök G, Salman Y, Akgöl S. Mannose based mostly polymeric nanoparticles for lectin separation. Sep Sci Technol. 2018;53(15):2365–75.

    Article 

    Google Scholar
     

  • Fields C, Li P, O’Mahony JJ, Lee GU. Advances in affinity ligand-functionalized nanomaterials for biomagnetic separation. Biotechnol Bioeng. 2016;113(1):11–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fraga García P, Freiherr von Roman M, Reinlein S, Wolf M, Berensmeier S. Affect of nanoparticle aggregation on protein restoration via a pentadentate chelate ligand on magnetic carriers. ACS Appl Mater Interfaces. 2014;6(16):13607–16.

    Article 
    PubMed 

    Google Scholar
     

  • Gädke J, Kleinfeldt L, Schubert C, Rohde M, Biedendieck R, Garnweitner G, Krull R. In situ affinity purification of his-tagged protein A from Bacillus megaterium cultivation utilizing recyclable superparamagnetic iron oxide nanoparticles. J Biotechnol. 2017;242:55–63.

    Article 
    PubMed 

    Google Scholar
     

  • Gädke J, Thies JW, Kleinfeldt L, Kalinin A, Starke G, Lakowitz A, et al. Built-in in situ-purification of recombinant proteins from Bacillus megaterium cultivation utilizing SPION in stirred tank reactors. Biochem Eng J. 2017;126:58–67.

    Article 

    Google Scholar
     

  • Gagnon P, Toh P, Lee J. Excessive productiveness purification of immunoglobulin G monoclonal antibodies on starch-coated magnetic nanoparticles by steric exclusion of polyethylene glycol. J Chromatogr A. 2014;1324:171–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gessner I, Yu X, Jüngst C, Klimpel A, Wang L, Fischer T, et al. Selective seize and purification of micrornas and intracellular proteins via antisense-vectorized magnetic nanobeads. Sci Rep. 2019;9(1):1–10.

    Article 
    CAS 

    Google Scholar
     

  • Ghanbari Adivi F, Hashemi P. Ultrafine agarose-coated superparamagnetic iron oxide nanoparticles (AC-SPIONs): a promising sorbent for drug supply purposes. J Iran Chem Soc. 2018;15(5):1145–52.

    Article 
    CAS 

    Google Scholar
     

  • Gonzalez JS, Nicolás P, Ferreira ML, Avena M, Lassalle VL, Alvarez VA. Fabrication of ferrogels utilizing completely different magnetic nanoparticles and their efficiency on protein adsorption. Polym Int. 2014;63(2):258–65.

    Article 
    CAS 

    Google Scholar
     

  • Grass RN, Athanassiou EK, Stark WJ. Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in natural synthesis. Angew Chem Int Ed. 2007;46(26):4909–12.

    Article 
    CAS 

    Google Scholar
     

  • Guo H, Solar H, Su Z, Hu S, Wang X. Fe3O4@ PAM@ NTA-Ni2+ magnetic composite nanoparticles for extremely particular separation of his-tagged proteins. J Wuhan Univ Technol Mater Sci Ed. 2018;33(3):559–65.

    Article 
    CAS 

    Google Scholar
     

  • Guo H, Wang W, Zhou F. Quick and extremely selective separation of His-tagged proteins by Ni2+-carrying magnetic core–shell nanoparticles. Appl Phys A. 2019;125(5):1–10.

    Article 
    CAS 

    Google Scholar
     

  • Hasan N, Guo Z, Wu HF. Giant protein evaluation of Staphylococcus aureus and Escherichia coli by MALDI TOF mass spectrometry utilizing amoxicillin functionalized magnetic nanoparticles. Anal Bioanal Chem. 2016;408(23):6269–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou X, Zhao C, Tian Y, Dou S, Zhang X, Zhao J. Preparation of functionalized Fe3O4@ SiO2 magnetic nanoparticles for monoclonal antibody purification. Chem Res Chin Univ. 2016;32(6):889–94.

    Article 
    CAS 

    Google Scholar
     

  • Hwang L, Ayaz-Guner S, Gregorich ZR, Cai W, Valeja SG, Jin S, Ge Y. Particular enrichment of phosphoproteins utilizing functionalized multivalent nanoparticles. J Am Chem Soc. 2015;137(7):2432–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain P, Solar L, Dai J, Baker GL, Bruening ML. Excessive-capacity purification of his-tagged proteins by affinity membranes containing functionalized polymer brushes. Biomacromol. 2007;8(10):3102–7.

    Article 
    CAS 

    Google Scholar
     

  • Jauregui R, Srinivasan S, Vojtech LN, Gammill HS, Chiu DT, Hladik F, et al. Temperature-responsive magnetic nanoparticles for enabling affinity separation of extracellular vesicles. ACS Appl Mater Interf. 2018;10(40):33847–56.

    Article 
    CAS 

    Google Scholar
     

  • Jiang D, Li X, Ma J, Jia Q. Growth of Gd3+-immobilized glutathione-coated magnetic nanoparticles for extremely selective enrichment of phosphopeptides. Talanta. 2018;180:368–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang D, Track N, Li X, Ma J, Jia Q. Extremely selective enrichment of phosphopeptides by on-chip indium oxide functionalized magnetic nanoparticles coupled with MALDI-TOF MS. Proteomics. 2017;17(17–18):1700213.

    Article 

    Google Scholar
     

  • Jiao F, Gao F, Wang H, Deng Y, Zhang Y, Qian X, Zhang Y. Polymeric hydrophilic ionic liquids used to change magnetic nanoparticles for the extremely selective enrichment of N-linked glycopeptides. Sci Rep. 2017;7(1):1–11.

    Article 

    Google Scholar
     

  • Jose L, Lee C, Hwang A, Park JH, Track JK, Paik HJ. Magnetically steerable Fe3O4@ Ni2+-NTA-polystyrene nanoparticles for the immobilization and separation of his6-protein. Eur Polymer J. 2019;112:524–9.

    Article 
    CAS 

    Google Scholar
     

  • Kim S, Sung D, Chang JH. Extremely environment friendly antibody purification with managed orientation of protein A on magnetic nanoparticles. MedChemComm. 2018;9(1):108–12.

    Article 
    PubMed 

    Google Scholar
     

  • Kupcik R, Rehulka P, Bilkova Z, Sopha H, Macak JM. New interface for purification of proteins: one-dimensional TiO2 nanotubes adorned by Fe3O4 nanoparticles. ACS Appl Mater Interfaces. 2017;9(34):28233–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurt BZ, Uckaya F, Durmus Z. Chitosan and carboxymethyl cellulose based mostly magnetic nanocomposites for software of peroxidase purification. Int J Biol Macromol. 2017;96:149–60.

    Article 

    Google Scholar
     

  • Leos JZ, Zydney AL. Microfiltration and ultrafiltration: ideas and purposes. Routledge; 2017.

    E book 

    Google Scholar
     

  • Li J, Chen M, Gao Z, Du J, Yang W, Yin M. Efficient method in direction of Si-bilayer-IDA modified CoFe2O4 magnetic nanoparticles for prime environment friendly protein separation. Colloids Surf B. 2016;146:468–74.

    Article 
    CAS 

    Google Scholar
     

  • Liao HY, Tsai FJ, Lai CC, Tseng MC, Hsu CY, Chen CJ. Speedy fabrication of functionalized plates for peptides, glycopeptides and protein purification and mass spectrometry evaluation. Analyst. 2016;141(7):2183–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim J, Choi M, Lee H, Kim YH, Han JY, Lee ES, Cho Y. Direct isolation and characterization of circulating exosomes from organic samples utilizing magnetic nanowires. J Nanobiotechnol. 2019;17(1):1–12.

    Article 

    Google Scholar
     

  • Liu JW, Yang T, Ma LY, Chen XW, Wang JH. Nickel nanoparticle adorned graphene for extremely selective isolation of polyhistidine-tagged proteins. Nanotechnology. 2013;24(50): 505704.

    Article 
    PubMed 

    Google Scholar
     

  • Liu S, Haller E, Horak J, Brandstetter M, Heuser T, Lämmerhofer M. Protein A-and Protein G-gold nanoparticle bioconjugates as nano-immunoaffinity platform for human IgG depletion in plasma and antibody extraction from cell tradition supernatant. Talanta. 2019;194:664–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Wang Y, Yan M, Huang J. Selective removing of hemoglobin from blood utilizing hierarchical copper shells anchored to magnetic nanoparticles. BioMed Res Int. 2017;2017(2017):1–11.


    Google Scholar
     

  • Liu Z, Fan S, Liu H, Yu J, Qiao R, Zhou M, et al. Enhanced detection of low-abundance human plasma proteins by integrating polyethylene glycol fractionation and immunoaffinity depletion. PLoS ONE. 2016;11(11):e0166306.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z, Li M, Li Z, Pu F, Ren J, Qu X. Quick access to selective binding and recyclable separation of histidine-tagged proteins utilizing Ni2+-decorated superparamagnetic nanoparticles. Nano Res. 2012;5(7):450–9.

    Article 
    CAS 

    Google Scholar
     

  • Lu J, Luan J, Li Y, He X, Chen L, Zhang Y. Hydrophilic maltose-modified magnetic metal-organic framework for extremely environment friendly enrichment of N-linked glycopeptides. J Chromatogr A. 2020;1615: 460754.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mir L, Michaels SL, Goel V, Kaiser R. Crossflow microfiltration: purposes, design, and price. In: Membrane handbook. Boston: Springer; 1992. p. 571–94.

    Chapter 

    Google Scholar
     

  • Mirahmadi-Zare SZ, Aboutalebi F, Allafchian M, Pirjamali L, Nasr-Esfahani MH. Layer by layer coating of NH2-silicate/polycarboxylic acid polymer saturated by Ni2+ onto the tremendous magnetic NiFe2O4 nanoparticles for delicate and bio-valuable separation of His-tagged proteins. Protein Expr Purif. 2018;143:71–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirahmadi-Zare SZ, Allafchian A, Aboutalebi F, Shojaei P, Khazaie Y, Dormiani Okay, et al. Tremendous magnetic nanoparticles NiFe2O4, coated with aluminum–nickel oxide sol-gel lattices to secure, delicate and selective purification of his-tagged proteins. Protein Expr Purif. 2016;121:52–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naseri MG, Saion EB, Ahangar HA, Hashim M, Shaari AH. Easy preparation and characterization of nickel ferrite nanocrystals by a thermal remedy technique. Powder Technol. 2011;212(1):80–8.

    Article 
    CAS 

    Google Scholar
     

  • Nash MA, Yager P, Hoffman AS, Stayton PS. Combined stimuli-responsive magnetic and gold nanoparticle system for speedy purification, enrichment, and detection of biomarkers. Bioconjug Chem. 2010;21(12):2197–204.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nehilla BJ, Hill JJ, Srinivasan S, Chen YC, Schulte TH, Stayton PS, Lai JJ. A stimuli-responsive, binary reagent system for speedy isolation of protein biomarkers. Anal Chem. 2016;88(21):10404–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neto JMWD, de Albuquerque Wanderley MC, de Albuquerque Lima C, Porto ALF. Single step purification through magnetic nanoparticles of latest broad pH lively protease from Penicillium aurantiogriseum. Protein Expr Purif. 2018;147:22–8.

    Article 

    Google Scholar
     

  • Ni Q, Chen B, Dong S, Tian L, Bai Q. Preparation of core–shell construction Fe3O4@ SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metallic ion affinity adsorbents for his-tag protein purification. Biomed Chromatogr. 2016;30(4):566–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oz Y, Abdouni Y, Yilmaz G, Becer CR, Sanyal A. Magnetic glyconanoparticles for selective lectin separation and purification. Polym Chem. 2019;10(24):3351–61.

    Article 
    CAS 

    Google Scholar
     

  • Pan D, Zhang H, Fan T, Chen J, Duan X. Practically monodispersed core–shell structural Fe3O4@ DFUR–LDH submicro particles for magnetically managed drug supply and launch. Chem Commun. 2011;47(3):908–10.

    Article 
    CAS 

    Google Scholar
     

  • Pan SD, Chen XH, Li XP, Cai MQ, Shen HY, Zhao YG, Jin MC. In situ controllable synthesis of graphene oxide-based ternary magnetic molecularly imprinted polymer hybrid for environment friendly enrichment and detection of eight microcystins. J Mater Chem A. 2015;3(45):23042–52.

    Article 
    CAS 

    Google Scholar
     

  • Parisien A, Al-Zarka F, Hussack G, Baranova EA, Thibault J, Lan CQ. Nickel nanoparticles synthesized by a modified polyol technique for the purification of histidine-tagged single-domain antibody ToxA5.1. J Mater Res. 2012;27(22):2884–90.

    Article 
    CAS 

    Google Scholar
     

  • Pashazadeh-Panahi P, Hasanzadeh M, Eivazzadeh-Keihan R. A novel optical probe based mostly on d-penicillamine-functionalized graphene quantum dots: preparation and software as sign amplification component to minoring of ions in human biofluid. J Mol Recognit. 2020;33(5): e2828.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paulus AS, Heinzler R, Ooi HW, Franzreb M. Temperature-switchable agglomeration of magnetic particles designed for steady separation processes in biotechnology. ACS Appl Mater Interfaces. 2015;7(26):14279–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piovesana S, Capriotti AL, Cavaliere C, Ferraris F, Samperi R, Ventura S, Laganà A. Phosphopeptide enrichment: improvement of magnetic strong part extraction technique based mostly on polydopamine coating and Ti4+-IMAC. Anal Chim Acta. 2016;909:67–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Posthuma-Trumpie GA, Korf J, van Amerongen A. Lateral circulate (immuno) assay: its strengths, weaknesses, alternatives and threats. A literature survey. Anal Bioanal Chem. 2009;393(2):569–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Powell CD, Atkinson AJ, Ma Y, Marcos-Hernandez M, Villagran D, Westerhoff P, Wong MS. Magnetic nanoparticle restoration gadget (MagNERD) permits software of iron oxide nanoparticles for water remedy. J Nanopart Res. 2020;22:1–11.

    Article 

    Google Scholar
     

  • Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M. Graphene and graphene oxide as nanomaterials for drugs and biology software. J Nanostruct Chem. 2018;8(2):123–37.

    Article 
    CAS 

    Google Scholar
     

  • Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at strong surfaces. Adv Coll Interface Sci. 2011;162(1–2):87–106.

    Article 
    CAS 

    Google Scholar
     

  • Rashid Z, Ghahremanzadeh R, Nejadmoghaddam MR, Nazari M, Shokri MR, Naeimi H, Zarnani AH. Nickel-Salen supported paramagnetic nanoparticles for 6-His-target recombinant protein affinity purification. J Chromatogr A. 2017;1490:47–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rashid Z, Naeimi H, Zarnani AH, Nazari M, Nejadmoghaddam MR, Ghahremanzadeh R. Quick and extremely environment friendly purification of 6× histidine-tagged recombinant proteins by Ni-decorated MnFe2O4@ SiO2@ NH2@ 2AB as novel and environment friendly affinity adsorbent magnetic nanoparticles. RSC Adv. 2016;6(43):36840–8.

    Article 
    CAS 

    Google Scholar
     

  • Sadeghi M, Hanifpour F, Taheri R, Javadian H, Ghasemi M. Comparability of utilizing formaldehyde and carboxy methyl chitosan in preparation of Fe3O4 superparamagnetic nanoparticles-chitosan hydrogel community: sorption conduct towards bovine serum albumin. Course of Saf Environ Prot. 2016;102:119–28.

    Article 
    CAS 

    Google Scholar
     

  • Sahu SK, Chakrabarty A, Bhattacharya D, Ghosh SK, Pramanik P. Single step floor modification of extremely secure magnetic nanoparticles for purification of His-tag proteins. J Nanopart Res. 2011;13(6):2475–84.

    Article 
    CAS 

    Google Scholar
     

  • Salimi Okay, Usta DD, Koçer ?, Celik E, Tuncel A. Protein A and protein A/G coupled magnetic SiO2 microspheres for affinity purification of immunoglobulin G. Int J Biol Macromol. 2018;111:178–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saravanakumar T, Palvannan T, Kim DH, Park SM. Optimized immobilization of peracetic acid producing recombinant acetyl xylan esterase on chitosan coated-Fe3O4 magnetic nanoparticles. Course of Biochem. 2014;49(11):1920–8.

    Article 
    CAS 

    Google Scholar
     

  • Scheich C, Sievert V, Büssow Okay. An automatic technique for high-throughput protein purification utilized to a comparability of His-tag and GST-tag affinity chromatography. BMC Biotechnol. 2003;3(1):1–8.

    Article 

    Google Scholar
     

  • Schneider EM, Zeltner M, Zlateski V, Grass RN, Stark WJ. Click on and launch: fluoride cleavable linker for gentle bioorthogonal separation. Chem Commun. 2016;52(5):938–41.

    Article 
    CAS 

    Google Scholar
     

  • Shi L, Tang Y, Hao Y, He G, Gao R, Tang X. Selective adsorption of protein by a high-efficiency Cu2+-cooperated magnetic imprinted nanomaterial. J Sep Sci. 2016;39(14):2876–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spriestersbach A, Kubicek J, Schäfer F, Block H, Maertens B. Purification of His-tagged proteins. In: Strategies in enzymology, vol. 559. USA: Tutorial Press; 2015. p. 1–15.


    Google Scholar
     

  • Sui Y, Cui Y, Nie Y, Xia GM, Solar GX, Han JT. Floor modification of magnetite nanoparticles utilizing gluconic acid and their software in immobilized lipase. Colloids Surf B. 2012;93:24–8.

    Article 
    CAS 

    Google Scholar
     

  • Solar S, Ma M, Qiu N, Huang X, Cai Z, Huang Q, Hu X. Affinity adsorption and separation behaviors of avidin on biofunctional magnetic nanoparticles binding to iminobiotin. Colloids Surf B. 2011;88(1):246–53.

    Article 
    CAS 

    Google Scholar
     

  • Ta DT, Vanella R, Nash MA. Magnetic separation of elastin-like polypeptide receptors for enrichment of mobile and molecular targets. Nano Lett. 2017;17(12):7932–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taheri-Ledari R, Esmaeili MS, Varzi Z, Eivazzadeh-Keihan R, Maleki A, Shalan AE. Facile path to synthesize Fe3O4@ acacia–SO3H nanocomposite as a heterogeneous magnetic system for catalytic purposes. RSC Adv. 2020;10(66):40055–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarhan T, Tural B, Tural S, Topal G. Enantioseparation of mandelic acid enantiomers with magnetic nano-sorbent modified by a chiral selector. Chirality. 2015;27(11):835–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tural B, Tural S, Erta? E, Yal?nk?l?ç ?, Demir AS. Purification and covalent immobilization of benzaldehyde lyase with heterofunctional chelate-epoxy modified magnetic nanoparticles and its carboligation reactivity. J Mol Catal B Enzym. 2013;95:41–7.

    Article 
    CAS 

    Google Scholar
     

  • van Reis R, Leonard LC, Hsu CC, Builder SE. Industrial scale harvest of proteins from mammalian cell tradition by tangential circulate filtration. Biotechnol Bioeng. 1991;38(4):413–22.

    Article 
    PubMed 

    Google Scholar
     

  • Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for focused drug supply and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Okay, Ding Y, Hong X, Liu Y. An infrared IgG immunoassay based mostly on using a nanocomposite consisting of silica coated Fe3O4 superparticles. Microchim Acta. 2019;186(2):1–8.

    Article 

    Google Scholar
     

  • Wang Q, He XM, Chen X, Zhu GT, Wang RQ, Feng YQ. Pyridoxal 5?-phosphate mediated preparation of immobilized metallic affinity materials for extremely selective and delicate enrichment of phosphopeptides. J Chromatogr A. 2017;1499:30–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang W, Wang DI, Li Z. Facile fabrication of recyclable and lively nanobiocatalyst: purification and immobilization of enzyme in a single pot with Ni-NTA functionalized magnetic nanoparticle. Chem Commun. 2011;47(28):8115–7.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Wang G, Xiao Y, Yang Y, Tang R. Yolk–shell nanostructured Fe3O4@ NiSiO3 for selective affinity and magnetic separation of His-tagged proteins. ACS Appl Mater Interfaces. 2014;6(21):19092–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wierucka M, Biziuk M. Utility of magnetic nanoparticles for magnetic solid-phase extraction in making ready organic, environmental and meals samples. TrAC Developments Anal Chem. 2014;59:50–8.

    Article 
    CAS 

    Google Scholar
     

  • Witte Okay, Müller Okay, Grüttner C, Westphal F, Johansson C. Particle size-and concentration-dependent separation of magnetic nanoparticles. J Magn Magn Mater. 2017;427:320–4.

    Article 
    CAS 

    Google Scholar
     

  • Wu R, Li L, Deng C. Extremely environment friendly and selective enrichment of glycopeptides utilizing simply synthesized magG/PDA/Au/l-Cys composites. Proteomics. 2016;16(9):1311–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie Y, Deng C, Li Y. Designed synthesis of ultra-hydrophilic sulfo-functionalized metallic–natural frameworks with a magnetic core for extremely environment friendly enrichment of the N-linked glycopeptides. J Chromatogr A. 2017;1508:1–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu JK, Zhang FF, Solar JJ, Sheng J, Wang F, Solar M. Bio and nanomaterials based mostly on Fe3O4. Molecules. 2014;19(12):21506–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu J, Liu L, He J, Ma S, Li S, Wang Z, et al. Engineered magnetosomes fused to useful molecule (protein A) present a extremely efficient different to industrial immunomagnetic beads. J Nanobiotechnol. 2019;17(1):1–11.

    Article 

    Google Scholar
     

  • Xu X, Chen H, Cao Y, Lin Y, Liu JA. A novel fluorescent nanoparticle for delicate detection of Cry1Ab protein in vitro and in vivo. J Fluoresc. 2018;28(4):863–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Ni Okay, Wei D, Ren Y. One-step purification and immobilization of his-tagged protein through Ni2+-functionalized Fe3O4@ polydopamine magnetic nanoparticles. Biotechnol Bioprocess Eng. 2015;20(5):901–7.

    Article 
    CAS 

    Google Scholar
     

  • Yao S, Yan X, Zhao Y, Li B, Solar L. Selective binding and magnetic separation of histidine-tagged proteins utilizing Ni2+-decorated Fe3O4/hydroxyapatite composite nanoparticles. Mater Lett. 2014;126:97–100.

    Article 
    CAS 

    Google Scholar
     

  • Zhai R, Jiao F, Feng D, Hao F, Li J, Li N, et al. Preparation of blended lanthanides-immobilized magnetic nanoparticles for selective enrichment and identification of phosphopeptides by MS. Electrophoresis. 2014;35(24):3470–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Solar J, Liu Y, Li J, Su Y, Xia W, Yang Y. Separation and purification of phosvitin phosphopeptides utilizing immobilized metallic affinity nanoparticles. J Chromatogr B. 2012;893:121–6.

    Article 

    Google Scholar
     

  • Zhang M, Qiao J, Qi L. Twin-functional polymer-modified magnetic nanoparticles for isolation of lysozyme. Anal Chim Acta. 2018;1035:70–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Wang H, Lu H. Sequential selective enrichment of phosphopeptides and glycopeptides utilizing amine-functionalized magnetic nanoparticles. Mol BioSyst. 2013;9(3):492–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Xing LG, Chen XW, Wang JH. Nano copper oxide-incorporated mesoporous carbon composite as multimode adsorbent for selective isolation of hemoglobin. ACS Appl Mater Interfaces. 2015;7(9):5116–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Yang X, Chen X, Zhang M, Luo L, Peng M, Yao S. Novel magnetic bovine serum albumin imprinted polymers with a matrix of carbon nanotubes, and their software to protein separation. Anal Bioanal Chem. 2011;401(9):2855–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao L, Wu RA, Han G, Zhou H, Ren L, Tian R, Zou H. The extremely selective seize of phosphopeptides by zirconium phosphonate-modified magnetic nanoparticles for phosphoproteome evaluation. J Am Soc Mass Spectrom. 2011;19(8):1176–86.

    Article 

    Google Scholar
     

  • Zhou Q, Lu Z, Cao X. Heterostructured magnetite-titanate nanosheets for immediate cost selective binding and magnetic separation of blended proteins. J Colloid Interface Sci. 2014;415:48–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Z, Irudayaraj J. A local chromatin extraction technique based mostly on salicylic acid coated magnetic nanoparticles and characterization of chromatin. Analyst. 2015;140(3):938–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu M, Liu W, Liu H, Liao Y, Wei J, Zhou X, Xing D. Building of Fe3O4/vancomycin/PEG magnetic nanocarrier for extremely environment friendly pathogen enrichment and gene sensing. ACS Appl Mater Interfaces. 2015;7(23):12873–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    Social Media Auto Publish Powered By : XYZScripts.com