London Escorts sunderland escorts 1v1.lol unblocked yohoho 76 https://www.symbaloo.com/mix/yohoho?lang=EN yohoho https://www.symbaloo.com/mix/agariounblockedpvp https://yohoho-io.app/ https://www.symbaloo.com/mix/agariounblockedschool1?lang=EN
13.4 C
New York
Friday, November 8, 2024

An built-in microwave-to-optics interface for scalable quantum computing


  • Kimble, H. J. The quantum web. Nature 453, 1023 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum web: a imaginative and prescient for the street forward. Science 362, eaam9288 (2018).

    Article 

    Google Scholar
     

  • Alexeev, Y. et al. Quantum laptop techniques for scientific discovery. PRX Quantum 2, 017001 (2021).

    Article 

    Google Scholar
     

  • Ladd, T. D. et al. Quantum computer systems. Nature 464, 45 (2010).

    Article 
    CAS 

    Google Scholar
     

  • de Leon, N. P. et al. Supplies challenges and alternatives for quantum computing {hardware}. Science 372, eabb2823 (2021).

    Article 

    Google Scholar
     

  • Gambetta, J. IBM Analysis Weblog https://analysis.ibm.com/weblog/next-wave-quantum-centric-supercomputing (2022).

  • Awschalom, D. et al. Improvement of quantum interconnects (QuICs) for next-generation info applied sciences. PRX Quantum 2, 017002 (2021).

    Article 

    Google Scholar
     

  • Krastanov, S. et al. Optically-heralded entanglement of superconducting techniques in quantum networks. Phys. Rev. Lett. 127, 040503 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bravyi, S., Dial, O., Gambetta, J. M., Gil, D. & Nazario, Z. The way forward for quantum computing with superconducting qubits. J. Appl. Phys. 132, 160902 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Magnard, P. et al. Microwave quantum hyperlink between superconducting circuits housed in spatially separated cryogenic techniques. Phys. Rev. Lett. 125, 260502 (2020).

    Article 
    CAS 

    Google Scholar
     

  • McKenna, T. P. et al. Cryogenic microwave-to-optical conversion utilizing a triply resonant lithium-niobate-on-sapphire transducer. Optica 7, 1737 (2020).

    Article 

    Google Scholar
     

  • Xu, Y. et al. Bidirectional interconversion of microwave and lightweight with thin-film lithium niobate. Nat. Commun. 12, 4453 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sahu, R. et al. Quantum-enabled operation of a microwave-optical interface. Nat. Commun. 13, 1276 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Vainsencher, A., Satzinger, Ok. J., Peairs, G. A. & Cleland, A. N. Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical gadget. Appl. Phys. Lett. 109, 033107 (2016).

    Article 

    Google Scholar
     

  • Jiang, W. et al. Environment friendly bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Stockill, R. et al. Extremely-low-noise microwave to optics conversion in gallium phosphide. Nat. Commun. 13, 2496 (2022).

    Article 

    Google Scholar
     

  • Higginbotham, A. P. et al. Electro-optic correlations enhance an environment friendly mechanical converter. Nat. Phys. 14, 1038 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Arnold, G. et al. Changing microwave and telecom photons with a silicon photonic nanomechanical interface. Nat. Commun. 11, 4460 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Han, J. et al. Coherent microwave-to-optical conversion through six-wave mixing in Rydberg atoms. Phys. Rev. Lett. 120, 093201 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fernandez-Gonzalvo, X., Horvath, S. P., Chen, Y. H. & Longdell, J. J. Cavity-enhanced Raman heterodyne spectroscopy in Er3+:Y2SiO5 for microwave to optical sign conversion. Phys. Rev. A 100, 033807 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 3266 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hisatomi, R. et al. Bidirectional conversion between microwave and lightweight through ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016).

    Article 

    Google Scholar
     

  • Lauk, N. et al. Views on quantum transduction. Quantum Sci. Technol. 5, 20501 (2020).

    Article 

    Google Scholar
     

  • Han, X., Fu, W., Zou, C.-L., Jiang, L. & Tang, H. X. Microwave-optical quantum frequency conversion. Optica 8, 1050 (2021).

    Article 

    Google Scholar
     

  • Siddiqi, I. Engineering high-coherence superconducting qubits. Nat. Rev. Mat. 10, 875 (2021).

    Article 

    Google Scholar
     

  • Krinner, S. et al. Realizing repeated quantum error correction in a distance-three floor code. Nature 605, 669 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Horsman, C., Fowler, A., Devitt, S. & van Meter, R. Floor code quantum computing by lattice surgical procedure. New J. Phys. 14, 123011 (2012).

    Article 

    Google Scholar
     

  • Beals, R. et al. Environment friendly distributed quantum computing. Proc. R. Soc. A 469, 20120686 (2013).

    Article 

    Google Scholar
     

  • Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit techniques. EPJ Quantum Technol. 6, 2 (2019).

    Article 

    Google Scholar
     

  • Zeuthen, E., Schliesser, A., Sørensen, A. S. & Taylor, J. M. Figures of advantage for quantum transducers. Quantum Sci. Technol. 5, 34009 (2020).

    Article 

    Google Scholar
     

  • Brubaker, B. M. et al. Optomechanical ground-state cooling in a steady and environment friendly electro-optic transducer. Phys. Rev. X 12, 021062 (2022).

    CAS 

    Google Scholar
     

  • Jiang, W. et al. Optically heralded microwave photon addition. Nat. Phys. https://doi.org/10.1038/s41567-023-02129-w (2023).

  • Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation defend. Appl. Phys. Lett. 101, 081115 (2012).

    Article 

    Google Scholar
     

  • Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    Article 

    Google Scholar
     

  • Xu, M., Han, X., Fu, W., Zou, C.-L. & Tang, H. X. Frequency-tunable high-Q superconducting resonators through wi-fi management of nonlinear kinetic inductance. Appl. Phys. Lett. 114, 192601 (2019).

    Article 

    Google Scholar
     

  • Kuwictsova, I. E., Zaitsev, B. D., Joshi, S. G. & Borodina, I. A. Investigation of acoustic waves in skinny plates of lithium niobate and lithium tantalate. IEEE Trans. Ultrason., Ferroelectr., Freq. Management 48, 322 (2001).

    Article 

    Google Scholar
     

  • Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, L., Shomroni, I., Seidler, P. & Kippenberg, T. J. Laser cooling of a nanomechanical oscillator to its zero-point power. Phys. Rev. Lett. 124, 173601 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lecocq, F. et al. Management and readout of a superconducting qubit utilizing a photonic hyperlink. Nature 591, 575 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Delaney, R. D. et al. Superconducting-qubit readout through low-backaction electro-optic transduction. Nature 606, 489 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    Social Media Auto Publish Powered By : XYZScripts.com