London Escorts sunderland escorts 1v1.lol unblocked yohoho 76 https://www.symbaloo.com/mix/yohoho?lang=EN yohoho https://www.symbaloo.com/mix/agariounblockedpvp https://yohoho-io.app/ https://www.symbaloo.com/mix/agariounblockedschool1?lang=EN
3.9 C
New York
Friday, January 31, 2025

Injectable biocompatible nanocomposites of Prussian blue nanoparticles and bacterial cellulose as a secure and efficient photothermal most cancers remedy | Journal of Nanobiotechnology


  • Li X, Lovell JF, Yoon J, Chen X. Medical growth and potential of photothermal and photodynamic therapies for most cancers. Nat Rev Clin Oncol. 2020;17(11):657–74.

    Article 
    PubMed 

    Google Scholar
     

  • Liu S, Pan X, Liu H. Two-dimensional nanomaterials for photothermal remedy. Angew Chem. 2020;132(15):5943–53.

    Article 

    Google Scholar
     

  • Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS. Natural molecule-based photothermal brokers: an increasing photothermal remedy universe. Chem Soc Rev. 2018;47(7):2280–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal remedy and photoacoustic imaging through nanotheranostics in combating most cancers. Chem Soc Rev. 2019;48(7):2053–108.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA. Most cancers cell imaging and photothermal remedy within the near-infrared area through the use of gold nanorods. J Am Chem Soc. 2006;128(6):2115–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melamed JR, Edelstein RS, Day ES. Elucidating the basic mechanisms of cell demise triggered by photothermal remedy. ACS Nano. 2015;9(1):6–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pérez-Hernández M, Del Pino P, Mitchell SG, Moros M, Stepien G, Pelaz B, Parak WJ, Gálvez EM, Pardo J, de la Fuente JM. Dissecting the molecular mechanism of apoptosis throughout photothermal remedy utilizing gold nanoprisms. ACS Nano. 2015;9(1):52–61.

    Article 
    PubMed 

    Google Scholar
     

  • Li J, Zhang W, Ji W, Wang J, Wang N, Wu W, Wu Q, Hou X, Hu W, Li L. Close to infrared photothermal conversion supplies: mechanism, preparation and photothermal most cancers remedy functions. J Mater Chem B. 2021. https://doi.org/10.1039/D1TB01310F.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lan M, Zhao S, Zhang Z, Yan L, Guo L, Niu G, Zhang J, Zhao J, Zhang H, Wang P. Two-photon-excited near-infrared emissive carbon dots as multifunctional brokers for fluorescence imaging and photothermal remedy. Nano Res. 2017;10(9):3113–23.

    Article 
    CAS 

    Google Scholar
     

  • Zhou F, Da X, Ou Z, Wu B, Resasco DE, Chen WR. Most cancers photothermal remedy within the near-infrared area through the use of single-walled carbon nanotubes. J Biomed Choose. 2009;14(2):021009.

    Article 
    PubMed 

    Google Scholar
     

  • Kang B, Mackey MA, El-Sayed MA. Nuclear concentrating on of gold nanoparticles in most cancers cells induces DNA injury, inflicting cytokinesis arrest and apoptosis. J Am Chem Soc. 2010;132(5):1517–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim D, Jeong YY, Jon S. A drug-loaded aptamer? gold nanoparticle bioconjugate for mixed CT imaging and remedy of prostate most cancers. ACS Nano. 2010;4(7):3689–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal remedy (PPTT) utilizing gold nanoparticles. Lasers Med Sci. 2008;23(3):217–28.

    Article 
    PubMed 

    Google Scholar
     

  • Boca-Farcau S, Potara M, Simon T, Juhem A, Baldeck P, Astilean S. Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and focused photothermal therapy on human ovarian most cancers cells. Mol Pharm. 2014;11(2):391–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Chang Z, Lu M, Shao D, Yue J, Yang D, Li M, Dong W-F. Janus silver/silica nanoplatforms for light-activated liver most cancers chemo/photothermal remedy. ACS Appl Mater Interfaces. 2017;9(36):30306–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bian Ok, Zhang X, Liu Ok, Yin T, Liu H, Niu Ok, Cao W, Gao D. Peptide-directed hierarchical mineralized silver nanocages for anti-tumor photothermal remedy. ACS Maintain Chem Eng. 2018;6(6):7574–88.

    Article 
    CAS 

    Google Scholar
     

  • Tian Q, Hu J, Zhu Y, Zou R, Chen Z, Yang S, Li R, Su Q, Han Y, Liu X. Sub-10 nm Fe3O4@ Cu2–x S core–shell nanoparticles for dual-modal imaging and photothermal remedy. J Am Chem Soc. 2013;135(23):8571–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Estelrich J, Busquets MA. Iron oxide nanoparticles in photothermal remedy. Molecules. 2018;23(7):1567.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lambert TN, Andrews NL, Gerung H, Boyle TJ, Oliver JM, Wilson BS, Han SM. Water-soluble germanium (0) nanocrystals: cell recognition and near-infrared photothermal conversion properties. Small. 2007;3(4):691–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar W, Zhong G, Kübel C, Jelle AA, Qian C, Wang L, Ebrahimi M, Reyes LM, Helmy AS, Ozin GA. Measurement-tunable photothermal germanium nanocrystals. Angew Chem Int Ed. 2017;56(22):6329–34.

    Article 
    CAS 

    Google Scholar
     

  • Rastinehad AR, Anastos H, Wajswol E, Winoker JS, Sfakianos JP, Doppalapudi SK, Carrick MR, Knauer CJ, Taouli B, Lewis SC. Gold nanoshell-localized photothermal ablation of prostate tumors in a medical pilot gadget examine. Proc Natl Acad Sci. 2019;116(37):18590–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: value versus advantage of including concentrating on and imaging capabilities. Science. 2012;338(6109):903–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffman HA, Chakrabarti L, Dumont MF, Sandler AD, Fernandes R. Prussian blue nanoparticles for laser-induced photothermal remedy of tumors. RSC Adv. 2014;4(56):29729–34.

    Article 
    CAS 

    Google Scholar
     

  • Fu G, Liu W, Feng S, Yue X. Prussian blue nanoparticles function as a brand new technology of photothermal ablation brokers for most cancers remedy. Chem Commun. 2012;48(94):11567–9.

    Article 
    CAS 

    Google Scholar
     

  • Cheng L, Gong H, Zhu W, Liu J, Wang X, Liu G, Liu Z. PEGylated prussian blue nanocubes as a theranostic agent for simultaneous most cancers imaging and photothermal remedy. Biomaterials. 2014;35(37):9844–52.

    Article 
    CAS 

    Google Scholar
     

  • Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, Li C, Dai Z. Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of most cancers. Biomaterials. 2014;35(22):5814–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y-N, Zhang W-S, Liu X-P, Wei Y-Y, Xu Z-R. A nanohybrid of Prussian blue supported by boracic acid-modified g-C3N4 for Raman recognition of cell floor sialic acid and photothermal/photodynamic remedy. Colloids Surf, B. 2022;215:112490.

    Article 
    CAS 

    Google Scholar
     

  • Lengthy J, Guari Y, Guérin C, Larionova J. Prussian blue sort nanoparticles for biomedical functions. Dalton Trans. 2016;45(44):17581–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Guo Q, Zhu X, Feng W, Wang L, Ma L, Zhang G, Zhou J, Li F. Optimization of prussian blue coated NaDyF4: x% Lu nanocomposites for multifunctional imaging-guided photothermal remedy. Adv Func Mater. 2016;26(28):5120–30.

    Article 
    CAS 

    Google Scholar
     

  • Patra CR. Prussian blue nanoparticles and their analogues for software to most cancers theranostics. Future Med. 2016;11:569–72.

    CAS 

    Google Scholar
     

  • Fu J, Wu B, Wei M, Huang Y, Zhou Y, Zhang Q, Du L. Prussian blue nanosphere-embedded in situ hydrogel for photothermal remedy by peritumoral administration. Acta Pharmaceutica Sinica B. 2019;9(3):604–14.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Y, Wu L, Wang Q, Wu M, Xu B, Liu X, Liu J. Toxicological analysis of prussian blue nanoparticles after quick publicity of mice. Hum Exp Toxicol. 2016;35(10):1123–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu W, Chen S, Liu L, Ding B, Wang H. Formaldehyde sensors primarily based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sens Actuators, B Chem. 2011;157(2):554–9.

    Article 
    CAS 

    Google Scholar
     

  • Pourreza N, Golmohammadi H, Naghdi T, Yousefi H. Inexperienced in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Biosens Bioelectron. 2015;74:353–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torgbo S, Sukyai P. Bacterial cellulose-based scaffold supplies for bone tissue engineering. Appl Mater Right this moment. 2018;11:34–49.

    Article 

    Google Scholar
     

  • Almeida I, Pereira T, Silva N, Gomes F, Silvestre A, Freire C, Lobo JS, Costa P. Bacterial cellulose membranes as drug supply techniques: an in vivo pores and skin compatibility examine. Eur J Pharm Biopharm. 2014;86(3):332–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amin MCIM, Ahmad N, Halib N, Ahmad I. Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug supply. Carbohyd Polym. 2012;88(2):465–73.

    Article 

    Google Scholar
     

  • Trovatti E, Freire CS, Pinto PC, Almeida IF, Costa P, Silvestre AJ, Neto CP, Rosado C. Bacterial cellulose membranes utilized in topical and transdermal supply of lidocaine hydrochloride and ibuprofen: in vitro diffusion research. Int J Pharm. 2012;435(1):83–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohyd Polym. 2008;72(1):43–51.

    Article 
    CAS 

    Google Scholar
     

  • Wu J, Zheng Y, Tune W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohyd Polym. 2014;102:762–71.

    Article 
    CAS 

    Google Scholar
     

  • Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-H. Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing functions. Carbohyd Polym. 2013;94(1):603–11.

    Article 
    CAS 

    Google Scholar
     

  • Qiu Y, Qiu L, Cui J, Wei Q. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound therapeutic. Mater Sci Eng, C. 2016;59:303–9.

    Article 
    CAS 

    Google Scholar
     

  • Markstedt Ok, Mantas A, Tournier I, Martínez Ávila H, Hagg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering functions. Biomacromol. 2015;16(5):1489–96.

    Article 
    CAS 

    Google Scholar
     

  • Africa TK. The manufacturing of nata from coconut water. Unitas. 1949;22:60–100.


    Google Scholar
     

  • Chiaoprakobkij N, Suwanmajo T, Sanchavanakit N, Phisalaphong M. Curcumin-loaded bacterial cellulose/alginate/gelatin as a multifunctional biopolymer composite movie. Molecules. 2020;25(17):3800.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barud HS, Souza JL, Santos DB, Crespi MS, Ribeiro CA, Messaddeq Y, Ribeiro SJ. Bacterial cellulose/poly (3-hydroxybutyrate) composite membranes. Carbohyd Polym. 2011;83(3):1279–84.

    Article 
    CAS 

    Google Scholar
     

  • Wang H, Shao Z, Bacher M, Liebner F, Rosenau T. Fluorescent cellulose aerogels containing covalently immobilized (ZnS) x (CuInS2) 1–x/ZnS (core/shell) quantum dots. Cellulose. 2013;20(6):3007–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ngoensawat U, Parnsubsakul A, Kaitphaiboonwet S, Wutikhun T, Sapcharoenkun C, Pienpinijtham P, Ekgasit S. Luminescent nanohybrid of ZnO quantum dot and cellulose nanocrystal as anti-counterfeiting ink. Carbohyd Polym. 2021;262:117864.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Chen S, Hu W, Shi S, Shen W, Zhang X, Wang H. In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohyd Polym. 2009;76(4):509–12.

    Article 

    Google Scholar
     

  • Chanthiwong M, Mongkolthanaruk W, Eichhorn SJ, Pinitsoontorn S. Controlling the processing of co-precipitated magnetic bacterial cellulose/iron oxide nanocomposites. Mater Des. 2020;196:109148.

    Article 
    CAS 

    Google Scholar
     

  • Park S, Park J, Jo I, Cho S-P, Sung D, Ryu S, Park M, Min Ok-A, Kim J, Hong S. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials. 2015;58:93–102.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao J, Ji P, Sheng N, Guan F, Zhang M, Wang B, Chen S, Wang H. Hierarchical core-sheath polypyrrole@ carbon nanotube/bacterial cellulose macrofibers with excessive electrochemical efficiency for all-solid-state supercapacitors. Electrochim Acta. 2018;283:1578–88.

    Article 
    CAS 

    Google Scholar
     

  • He F, Zhao D. Manipulating the scale and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol. 2007;41(17):6216–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu C, Jiang J, Jia Y, Xu ZP, Zhang L. Past drug supply system: immunomodulatory layered double hydroxide nanoadjuvants take a necessary step ahead in most cancers immunotherapy. Acc Mater Res. 2023. https://doi.org/10.1021/accountsmr.3c00094.

    Article 

    Google Scholar
     

  • Wang H, Najibi AJ, Sobral MC, Search engine marketing BR, Lee JY, Wu D, Li AW, Verbeke CS, Mooney DJ. Biomaterial-based scaffold for in situ chemo-immunotherapy to deal with poorly immunogenic tumors. Nat Commun. 2020;11(1):5696.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang C, Solar Z, Zhao C, Zhang Z, Wang H, Liu Y, Guo Y, Zhang B, Gu L, Yu Y. Sustaining manganese in tumor to activate cGAS-STING pathway evokes a strong abscopal anti-tumor impact. J Management Launch. 2021;331:480–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Wang Z, Chen B, Yin Q, Pan M, Xia H, Zhang B, Yan Y, Jiang Z, Zhang Q. Cooperative self-assembled nanoparticle induces sequential immunogenic cell demise and toll-like receptor activation for synergistic chemo-immunotherapy. Nano Lett. 2021;21(10):4371–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang L, Lang Y, Wu H, Xiang Ok, Wang Y, Yu M, Liu Y, Yang B, He L, Lu G. Engineered toll-like receptor nanoagonist binding to extracellular matrix elicits secure and sturdy antitumor immunity. ACS Nano. 2023;17(6):5340–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aref AM, Tohamy AA, Abdel Moneim AE, Sayed RH. Cinnamic acid attenuates cisplatin-induced hepatotoxicity and nephrotoxicity. 2016.

  • Nayak N, Sathar SA, Mughal S, Duttagupta S, Mathur M, Chopra P. The character and significance of liver cell vacuolation following hepatocellular damage—an evaluation primarily based on observations on rats rendered tolerant to hepatotoxic injury. Virchows Arch. 1996;428(6):353–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jing L, Wang Y, Yang Y, Yue X, Dai Z. Hyaluronic acid modified hole Prussian blue nanoparticles loading 10-hydroxycamptothecin for concentrating on thermochemotherapy of most cancers. Theranostics. 2016;6(1):40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Ma Y, Wang X, Wu X, Zha Z. Facile synthesis of Prussian blue nanoparticles as pH-responsive drug carriers for mixed photothermal-chemo therapy of most cancers. RSC Adv. 2017;7(1):248–55.

    Article 
    CAS 

    Google Scholar
     

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug supply. Nat Rev Drug Discovery. 2021;20(2):101–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Hao Y, Wu Y, Zhou Z, Li J, Solar X, Liu Y-N. Built-in hydrogel platform for programmed antitumor remedy primarily based on close to infrared-triggered hyperthermia and vascular disruption. ACS Appl Mater Interfaces. 2019;11(24):21381–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Zeng W, Chen Z, Suo W, Quan H, Tan Z-J. An intratumoral injectable nanozyme hydrogel for hypoxia-resistant thermoradiotherapy. Colloids Surf, B. 2021;207:112026.

    Article 
    CAS 

    Google Scholar
     

  • Irvine DJ, Dane EL. Enhancing most cancers immunotherapy with nanomedicine. Nat Rev Immunol. 2020;20(5):321–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cano-Mejia J, Burga RA, Sweeney EE, Fisher JP, Bollard CM, Sandler AD, Cruz CRY, Fernandes R. Prussian blue nanoparticle-based photothermal remedy mixed with checkpoint inhibition for photothermal immunotherapy of neuroblastoma. Nanomed Nanotechnol Biol Med. 2017;13(2):771–81.

    Article 
    CAS 

    Google Scholar
     

  • Hu M, Furukawa S, Ohtani R, Sukegawa H, Nemoto Y, Reboul J, Kitagawa S, Yamauchi Y. Synthesis of prussian blue nanoparticles with a hole inside by managed chemical etching. Angew Chem Int Ed. 2012;51(4):984–8.

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    Social Media Auto Publish Powered By : XYZScripts.com