Zhang, Q., Tao, W., Huang, J., Xia, R. & Cabanillas-Gonzalez, J. Towards electrically pumped natural lasers: a assessment and outlook on materials developments and resonator architectures. Adv. Photon. Res. 2, 2000155 (2021).
Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).
Geiregat, P., Van Thourhout, D. & Hens, Z. A vivid future for colloidal quantum dot lasers. npg Asia Mater. 11, 41 (2019).
Pietryga, M. et al. Spectroscopic and gadget elements of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).
Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulovi?, V. Emergence of colloidal quantum-dot light-emitting applied sciences. Nat. Photon. 7, 13–23 (2012).
Semonin, O. E. et al. Peak exterior photocurrent quantum effectivity exceeding 100% by way of MEG in a quantum dot photo voltaic cell. Science 334, 1530–1533 (2011).
Deng, Z., Jeong, Ok. S. & Guyot-Sionnest, P. Colloidal quantum dots intraband photodetectors. ACS Nano 8, 11707–11714 (2014).
Livache, C., Martinez, B., Goubet, N., Ramade, J. & Lhuillier, E. Street map for nanocrystal based mostly infrared photodetectors. Entrance. Chem. 6, 575 (2018).
Garcia de Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. Answer-processed semiconductors for next-generation photo-detectors. Nat. Rev. Mater. 2, 16100 (2017).
Klimov, V. I. et al. Optical acquire and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).
Klimov, V. I. et al. Single-exciton optical acquire in semiconductor nanocrystals. Nature 447, 441–446 (2007).
Wu, Ok., Park, Y.-S., Lim, J. & Klimov, V. I. In direction of zero-threshold optical acquire utilizing charged semiconductor quantum dots. Nat. Nanotechnol. 12, 1140–1147 (2017).
Geiregat, P. et al. Steady-wave infrared optical acquire and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. Nat. Mater. 17, 35–42 (2017).
Cassidy, J. et al. Quantum shells enhance the optical acquire of lasing media. ACS Nano 16, 3017–3026 (2022).
Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional digital construction. Nat. Mater. 10, 936–941 (2011).
Guzelturk, B., Pelton, M., Olutas, M. & Demir, H. V. Large modal acquire coefficients in colloidal II-VI nanoplatelets. Nano Lett. 19, 277–282 (2018).
Geiregat, P. et al. Thermodynamic equilibrium between excitons and excitonic molecules dictates optical acquire in colloidal CdSe quantum wells. J. Phys. Chem. Lett. 10, 3637–3644 (2019).
Li, Q., Liu, Q., Schaller, R. D. & Lian, T. Lowering the optical acquire threshold in two-dimensional CdSe nanoplatelets by the large oscillator power transition impact. J. Phys. Chem. Lett. 10, 1624–1632 (2019).
Bisschop, S., Geiregat, P., Aubert, T. & Hens, Z. The influence of core/shell sizes on the optical acquire traits of CdSe/CdS quantum dots. ACS Nano 12, 9011–9021 (2018).
Fan, F. et al. Steady-wave lasing in colloical quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).
Lim, J., Park, Y.-S. & Klimov, V. I. Optical acquire in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2017).
Yang, Z., Pelton, M., Fedin, I. & Talapin, D. V. A room temperature continuous-wave nanolaser utilizing colloidal quantum wells. Nat. Commun. 8, 143 (2017).
Xie, W. et al. On-chip built-in quantum-dot silicon-nitride microdisk lasers. Adv. Mater. 29, 1604866 (2017).
Xie, W. et al. Colloidal quantum dots enabling coherent mild sources for built-in silicon-nitride photonics. IEEE J. Sel. Subjects Quantum Electron. 23, 8200913 (2017).
Jung, H. et al. Two-band optical acquire and ultrabright electroluminescence from colloidal quantum dots at 1,000?A?cm–2. Nat. Commun. 13, 3734 (2022).
Ahn, N. et al. Electrically pushed amplified spontaneous emission from colloidal quantum dots. Nature 617, 79–85 (2023).
Chernikov, A., Ruppert, C., Hill, H. M., Rigosi, A. F. & Heinz, T. F. Inhabitants inversion and large bandgap renormalization in atomically skinny WS2 layers. Nat. Photon. 9, 466–470 (2015).
Hens, Z. & Moreels, I. Mild absorption by colloidal semiconductor quantum dots. J. Mater. Chem. 22, 10406 (2012).
Ghobadi, N. Band hole dedication utilizing absorption spectrum becoming process. Int. Nano Lett. 3, 2 (2013).
Maes, J. et al. Measurement and focus dedication of colloidal nanocrystals by small-angle X-ray scattering. Chem. Mater. 30, 3952–3962 (2018).
Thambidurai, M. et al. Robust quantum confinement impact in nanocrystalline CdS. J. Mater. Sci. 45, 3254–3258 (2010).
Aubert, T. et al. Normal expression for the size-dependent optical properties of quantum dots. Nano Lett. 22, 1778–1785 (2022).
Geiregat, P. et al. Utilizing bulk-like nanocrystals to probe intrinsic optical acquire traits of inorganic lead halide perovskites. ACS Nano 12, 10178–10188 (2018).
Rodà, C. et al. Stimulated emission by way of an electron-hole plasma in colloidal CdSe quantum rings. Nano Lett. 21, 10062–10069 (2021).
Di Stasio, F., Polovitsyn, A., Angeloni, I., Moreels, I. & Krahne, R. Broadband amplified spontaneous emission and random lasing from wurtzite CdSe/CdS ‘giant-shell’ nanocrystals. ACS Photon. 3, 2083–2088 (2016).
Aellen, M. & Norris, D. J. Understanding optical acquire: which confinement issue is right? ACS Photon. 9, 3498–3505 (2022).
Hirose, Ok. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon. 8, 406–411 (2014).
Sakata, R. et al. Photonic-crystal surface-emitting lasers with modulated photonic crystals enabling 2D beam scanning and varied beam sample emission. Appl. Phys. Lett. 122, 130503 (2023).
Pinchetti, V. et al. Impact of core/shell interface on service dynamics and optical acquire properties of dual-color emitting CdSe/CdS nanocrystals. ACS Nano 10, 6877–6887 (2016).
Zhu, Y. et al. On-chip single-mode distributed suggestions colloidal quantum dot laser beneath nanosecond pumping. ACS Photon. 4, 2446–2452 (2017).
Adachi, M. M. et al. Microsecond-sustained lasing from colloidal quantum dot solids. Nat. Commun. 6, 8694 (2015).
Chen, Ok., Gallaher, J. Ok., Barker, A. J. & Hodgkiss, J. M. Transient grating photoluminescence spectroscopy: an ultrafast methodology of gating broadband spectra. J. Phys. Chem. Lett. 5, 1732–1737 (2014).
Pelant, I. & Valenta, J. Luminescence Spectroscopy of Semiconductors (Oxford Univ. Press, 2012).
Geiregat, P. et al. Coulomb shifts upon exciton addition to photoexcited PbS colloidal quantum dots. J. Phys. Chem. C 118, 22284–22290 (2014).
Dneprovskii, V. S., Klimov, V. I. & Novikov, M. G. Dynamics and mechanisms of recombination of electron-hole plasma and high-density excitons in CdS and CdSe. Sov. Phys. JETP 3, 468–478 (1991).
Tränkle, B. et al. Dimensionality dependence of the band-gap renomalization in two- and three dimensional electron-hole plasmas. Phys. Rev. Lett. 58, 419 (1987).
Saito, H. & Göbel, E. Picosecond spectroscopy of extremely excited Cds. Phys. Rev. B 31, 2360–2369 (1985).
Asano, Ok. & Yoshioka, T. Exciton-Mott physics in two-dimensional electron-hole methods: part diagram and single-particle spectra. J. Phys. Soc. Jpn 82, 084702 (2014).
Melnychuk, C. & Guyot-Sionnest, P. Multicarrier dynamics in quantum dots. Chem. Rev. 121, 2325–2372 (2021).
Aubert, T. et al. Homogeneously alloyed CdSeS quantum dots: an environment friendly synthesis for full optical tunability. Chem. Mater. 25, 2388–2390 (2013).
Liu, Y. Ok. et al. Wavelength-tunable lasing in single-crystal CdS1–XSeX nanoribbons. Nanotechnology 18, 365606 (2007).